Keyword

Meteorological geographical features

179 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
Resolution
From 1 - 10 / 179
  • [This dataset is embargoed until November 17, 2025]. This dataset provides daily estimates at locations that are part of the COSMOS-UK monitoring network for meteorological and potential evapotranspiration variables in the Climate hydrology and ecology research support system for the period 2013-2017 (CHESS-met and CHESS-PE). Additionally, for the same period, it provides estimates at COSMOS-UK sites locations for soil moisture simulations provided by JULES (Joint UK Land Environment Simulator) at four layers: top layer (0.0-0.1 m depth), second layer (0.1-0.35 m depth), third layer (0.35-1 m depth) and bottom layer (1-3 m depth). The following variables are available in the dataset: daily temperature range (K), specific humidity (kg kg-1), precipitation (kg m-2 s-1), air pressure (Pa), downward longwave radiation (W m-2), downward shortwave radiation (W m-2), wind speed (m s-1), potential evapotranspiration (mm day-1) and potential evapotranspiration with interception correction (mm day-1), soil moisture content of 1-top layer (m depth), soil moisture content of 2-second layer (m depth), soil moisture content of 3-third layer (m depth) and soil moisture content of 4-bottom layer (m depth). Full details about this dataset can be found at https://doi.org/10.5285/2bc23a5a-3a47-44da-80f6-ced6ae4ac45f

  • [THIS DATASET HAS BEEN WITHDRAWN]. Standardised Precipitation Index (SPI) data for Integrated Hydrological Units (IHU) Hydrometric Areas (Kral et al. [1]). SPI is a drought index based on the probability of precipitation for a given accumulation period as defined by McKee et al. [2]. SPI is calculated for different accumulation periods: 1, 3, 6, 12, 18, 24 months. Each of these is in turn calculated for each of the twelve calendar months. Note that values in monthly (and for longer accumulation periods also annual) time series of the data therefore are likely to be autocorrelated. The standard period which was used to fit the gamma distribution is 1961-2010. The dataset covers the period from 1862 to 2015. NOTE: the difference between this dataset with the previously published dataset 'Standardised Precipitation Index time series for IHU hydrometric areas (1961-2012)' [SPI_IHU_HA] (Tanguy et al., 2015 [3]), apart from the temporal extent, is the underlying rainfall data from which SPI was calculated. In the previously published dataset, CEH-GEAR (Keller et al., 2015 [4], Tanguy et al., 2014 [5]) was used, whereas in this new version, Met Office 5km rainfall grids were used (see supporting documentation for more details). Within Historic Droughts project (grant number: NE/L01016X/1), the Met Office has digitised historic rainfall and temperature data to produce high quality historic rainfall and temperature grids, which motivated the change in the underlying data to calculate SPI. The methodology to calculate SPI is the same in the two datasets. [1] Kral, F., Fry, M., Dixon, H. (2015). Integrated Hydrological Units of the United Kingdom: Hydrometric Areas without Coastline. NERC-Environmental Information Data Centre https://doi.org/10.5285/3a4e94fc-4c68-47eb-a217-adee2a6b02b3 [2] McKee, T. B., Doesken, N. J., Kleist, J. (1993). The Relationship of Drought Frequency and Duration to Time Scales. Eighth Conference on Applied Climatology, 17-22 January 1993, Anaheim, California. [3] Tanguy, M.; Kral., F.; Fry, M.; Svensson, C.; Hannaford, J. (2015). Standardised Precipitation Index time series for Integrated Hydrological Units Hydrometric Areas (1961-2012). NERC Environmental Information Data Centre. https://doi.org/10.5285/5e1792a0-ae95-4e77-bccd-2fb456112cc1 [4] Keller, V. D. J., Tanguy, M., Prosdocimi, I., Terry, J. A., Hitt, O., Cole, S. J., Fry, M., Morris, D. G., and Dixon, H.: CEH-GEAR: 1 km resolution daily and monthly areal rainfall estimates for the UK for hydrological use, Earth Syst. Sci. Data Discuss., 8, 83-112, https://doi.org/10.5194/essdd-8-83-2015, 2015. [5] Tanguy, M.; Dixon, H.; Prosdocimi, I.; Morris, D. G.; Keller, V. D. J. (2014). Gridded estimates of daily and monthly areal rainfall for the United Kingdom (1890-2012) [CEH-GEAR]. NERC Environmental Information Data Centre. https://doi.org/10.5285/5dc179dc-f692-49ba-9326-a6893a503f6e Full details about this dataset can be found at https://doi.org/10.5285/d8655cc9-b275-4e77-9e6c-1b16eee5c7d5

  • Precipitation chemistry data from the UK Environmental Change Network (ECN) terrestrial sites. Variables measured include pH, conductivity, alkalinity, aluminium, calcium, chloride, ammonium, nitrate nitrogen, phosphate phosphorous, potassium, sulphate sulphur, sodium, total nitrogen and total dissolved phosphorous. These data are collected by a bulk collector at all of ECN's terrestrial sites using a standard protocol. They represent continuous weekly records from 1992 to 2015. ECN is the UK's long-term environmental monitoring programme. It is a multi-agency programme sponsored by a consortium of fourteen government departments and agencies. These organisations contribute to the programme through funding either site monitoring and/or network co-ordination activities. These organisations are: Agri-Food and Biosciences Institute, Biotechnology and Biological Sciences Research Council, Cyfoeth Naturiol Cymru - Natural Resources Wales, Defence Science & Technology Laboratory, Department for Environment, Food and Rural Affairs, Environment Agency, Forestry Commission, Llywodraeth Cymru - Welsh Government, Natural England, Natural Environment Research Council, Northern Ireland Environment Agency, Scottish Environment Protection Agency, Scottish Government and Scottish Natural Heritage. Full details about this dataset can be found at https://doi.org/10.5285/18b7c387-037d-4949-98bc-e8db5ef4264c

  • Standardised Precipitation Index (SPI) data for Integrated Hydrological Units (IHU) Hydrometric Areas (Kral et al. [1]). SPI is a drought index based on the probability of precipitation for a given accumulation period as defined by McKee et al. [2]. SPI is calculated for different accumulation periods: 1, 3, 6, 12, 18, 24 months. Each of these is in turn calculated for each of the twelve calendar months. Note that values in monthly (and for longer accumulation periods also annual) time series of the data therefore are likely to be autocorrelated. The standard period which was used to fit the gamma distribution is 1961-2010. The dataset covers the period from 1961 to 2012. [1] Kral, F., Fry, M., Dixon, H. (2015). Integrated Hydrological Units of the United Kingdom: Hydrometric Areas without Coastline. NERC-Environmental Information Data Centre doi:10.5285/3a4e94fc-4c68-47eb-a217-adee2a6b02b3 [2] McKee, T. B., Doesken, N. J., Kleist, J. (1993). The Relationship of Drought Frequency and Duration to Time Scales. Eighth Conference on Applied Climatology, 17-22 January 1993, Anaheim, California. Full details about this dataset can be found at https://doi.org/10.5285/5e1792a0-ae95-4e77-bccd-2fb456112cc1

  • [THIS DATASET HAS BEEN WITHDRAWN]. 5km gridded Standardised Precipitation Index (SPI) data for Great Britain, which is a drought index based on the probability of precipitation for a given accumulation period as defined by McKee et al. [1]. SPI is calculated for different accumulation periods: 1, 3, 6, 12, 18, 24 months. Each of these is in turn calculated for each of the twelve calendar months. Note that values in monthly (and for longer accumulation periods also annual) time series of the data therefore are likely to be autocorrelated. The standard period which was used to fit the gamma distribution is 1961-2010. The dataset covers the period from 1862 to 2015. NOTE: the difference between this dataset with the previously published dataset 'Gridded Standardized Precipitation Index (SPI) using gamma distribution with standard period 1961-2010 for Great Britain [SPIgamma61-10]" (Tanguy et al., 2015 [2]), apart from the temporal and spatial extent, is the underlying rainfall data from which SPI was calculated. In the previously published dataset, CEH-GEAR (Keller et al., 2015 [3], Tanguy et al., 2014 [4]) was used, whereas in this version, Met Office 5km rainfall grids were used (see supporting information for more details). The methodology to calculate SPI is the same in the two datasets. [1] McKee, T. B., Doesken, N. J., Kleist, J. (1993). The Relationship of Drought Frequency and Duration to Time Scales. Eighth Conference on Applied Climatology, 17-22 January 1993, Anaheim, California. [2] Tanguy, M.; Hannaford, J.; Barker, L.; Svensson, C.; Kral, F.; Fry, M. (2015). Gridded Standardized Precipitation Index (SPI) using gamma distribution with standard period 1961-2010 for Great Britain [SPIgamma61-10]. NERC Environmental Information Data Centre. https://doi.org/10.5285/94c9eaa3-a178-4de4-8905-dbfab03b69a0 [3] Keller, V. D. J., Tanguy, M., Prosdocimi, I., Terry, J. A., Hitt, O., Cole, S. J., Fry, M., Morris, D. G., and Dixon, H. (2015). CEH-GEAR: 1 km resolution daily and monthly areal rainfall estimates for the UK for hydrological use, Earth Syst. Sci. Data Discuss., 8, 83-112, doi:10.5194/essdd-8-83-2015. [4] Tanguy, M.; Dixon, H.; Prosdocimi, I.; Morris, D. G.; Keller, V. D. J. (2014). Gridded estimates of daily and monthly areal rainfall for the United Kingdom (1890-2012) [CEH-GEAR]. NERC Environmental Information Data Centre. https://doi.org/10.5285/5dc179dc-f692-49ba-9326-a6893a503f6e Full details about this dataset can be found at https://doi.org/10.5285/ed7444fc-8c2a-473e-98cd-e68d3cffa2b0

  • This dataset consists in a collection of remotely sensed drought indicators time series. The data was extracted from CEH's gridded remotely sensed drought indicators product (Tanguy et al., 2016; http://doi.org/10.5285/4e0d0e50-2f9c-4647-864d-5c3b30bb5f4b), which has gridded data for Europe for three drought indicators: - the Vegetation Condition Index (VCI) based on satellite product NDVI (Normalised Difference Vegetation Index); - the Temperature Condition Index (TCI) based on remotely sensed LST (Land Surface Temperature); - the Vegetation Health Index (VHI) which is a combination of VCI and TCI. These three drought indicators have been extracted for European NUTS regions (level 0, 1, 2 and 3). These have been masked with a land use land cover map to be able to study different responses for various land cover types. A simplified LULC was created, with only four classes: forest, crop, shrub and grass. One extra time series was created for all classes together. Full details about this dataset can be found at https://doi.org/10.5285/5b3fcf9f-19d4-4ad3-a8bb-0a5ea02c857e

  • Standardised Precipitation Index (SPI) data for Integrated Hydrological Units (IHU) groups (Kral et al. [1]). SPI is a drought index based on the probability of precipitation for a given accumulation period as defined by McKee et al. [2]. SPI is calculated for different accumulation periods: 1, 3, 6, 12, 18, 24 months. Each of these is in turn calculated for each of the twelve calendar months. Note that values in monthly (and for longer accumulation periods also annual) time series of the data therefore are likely to be autocorrelated. The standard period which was used to fit the gamma distribution is 1961-2010. The dataset covers the period from 1961 to 2012. [1] Kral, F., Fry, M., Dixon, H. (2015). Integrated Hydrological Units of the United Kingdom: Groups. NERC-Environmental Information Data Centre https://doi.org/10.5285/f1cd5e33-2633-4304-bbc2-b8d34711d902 [2] McKee, T. B., Doesken, N. J., Kleist, J. (1993). The Relationship of Drought Frequency and Duration to Time Scales. Eighth Conference on Applied Climatology, 17-22 January 1993, Anaheim, California. Full details about this dataset can be found at https://doi.org/10.5285/dfd59438-2170-4472-b810-bab33a83d09f

  • The meteorological data describes the air and soil temperatures, net radiation balance, down-welling photosynthetically active radiation, wind speed, wind direction and the vapour pressure deficit. Data collection was carried out at Cartmel Sands marsh from the 31st of May 2013 till the 26th of January 2015. The Cartmel Sands site is in Morecambe, North West England, and the meteorological tower was situated in the middle of the marsh. This data was collected as part of Coastal Biodiversity and Ecosystem Service Sustainability (CBESS): NE/J015644/1. The project was funded with support from the Biodiversity and Ecosystem Service Sustainability (BESS) programme. BESS is a six-year programme (2011-2017) funded by the UK Natural Environment Research Council (NERC) and the Biotechnology and Biological Sciences Research Council (BBSRC) as part of the UK's Living with Environmental Change (LWEC) programme. Full details about this dataset can be found at https://doi.org/10.5285/b1e2fb9c-8c34-490a-b6ae-2fdf6b460726

  • 1km and 5km gridded Standardised Precipitation-Evapotranspiration Index (SPEI) data for Great Britain, which is a drought index based on the probability of Climatic Water Balance (CWB) - which is equivalent to the amount of precipitation minus the amount of evapotranspiration - for a given accumulation period as defined by Vicente Serrano et al. (2010). SPEI is calculated for different accumulation periods: 1, 3, 6, 12, 18, 24 months. Each of these is in turn calculated for each of the twelve calendar months. Note that values in monthly (and for longer accumulation periods also annual) time series of the data therefore are likely to be autocorrelated. The standard period which was used to fit the generalised logistic distribution is 1961-2010. The dataset covers the period from 1961 to 2012. Full details about this dataset can be found at https://doi.org/10.5285/d201a2af-568e-4195-bf02-961fb6954c72

  • [THIS DATASET HAS BEEN WITHDRAWN]. 5km gridded Standardised Precipitation Index (SPI) data for Great Britain, which is a drought index based on the probability of precipitation for a given accumulation period as defined by McKee et al. [1]. SPI is calculated for different accumulation periods: 1, 3, 6, 9, 12, 18, 24 months. Each of these is in turn calculated for each of the twelve calendar months. Note that values in monthly (and for longer accumulation periods also annual) time series of the data therefore are likely to be autocorrelated. The standard period which was used to fit the gamma distribution is 1961-2010. The dataset covers the period from 1862 to 2015. This release supersedes the previous version, doi:10.5285/ed7444fc-8c2a-473e-98cd-e68d3cffa2b0, as it addresses localised issues with the source data (Met Office monthly rainfall grids) for the period 1960 to 2000. NOTE: the difference between this dataset with the previously published dataset 'Gridded Standardized Precipitation Index (SPI) using gamma distribution with standard period 1961-2010 for Great Britain [SPIgamma61-10]" (Tanguy et al., 2015 [2]), apart from the temporal and spatial extent, is the underlying rainfall data from which SPI was calculated. In the previously published dataset, CEH-GEAR (Keller et al., 2015 [3], Tanguy et al., 2014 [4]) was used, whereas in this new version, Met Office 5km rainfall grids were used (see supporting information for more details). The methodology to calculate SPI is the same in the two datasets. [1] McKee, T. B., Doesken, N. J., Kleist, J. (1993). The Relationship of Drought Frequency and Duration to Time Scales. Eighth Conference on Applied Climatology, 17-22 January 1993, Anaheim, California. [2] Tanguy, M.; Hannaford, J.; Barker, L.; Svensson, C.; Kral, F.; Fry, M. (2015). Gridded Standardized Precipitation Index (SPI) using gamma distribution with standard period 1961-2010 for Great Britain [SPIgamma61-10]. NERC Environmental Information Data Centre. https://doi.org/10.5285/94c9eaa3-a178-4de4-8905-dbfab03b69a0 [3] Keller, V. D. J., Tanguy, M., Prosdocimi, I., Terry, J.A., Hitt, O., Cole, S. J., Fry, M., Morris, D. G., & Dixon, H. (2015). CEH-GEAR: 1 km resolution daily and monthly areal rainfall estimates for the UK for hydrological use. Copernicus GmbH. https://doi.org/10.5194/essdd-8-83-2015 [4] Tanguy, M.; Dixon, H.; Prosdocimi, I.; Morris, D. G.; Keller, V. D. J. (2014). Gridded estimates of daily and monthly areal rainfall for the United Kingdom (1890-2012) [CEH-GEAR]. NERC Environmental Information Data Centre. https://doi.org/10.5285/5dc179dc-f692-49ba-9326-a6893a503f6e Full details about this dataset can be found at https://doi.org/10.5285/1b228b42-42f8-4aee-b964-2c92a21d5556