Keyword

Gravity

108 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
Scale
Resolution
From 1 - 10 / 108
  • Long-range airborne geophysical measurements were carried out in the ICEGRAV campaigns (2010-2013), covering hitherto unexplored parts of interior East Antarctica and part of the Antarctic Peninsula. The airborne surveys provided a regional coverage of gravity, magnetic and ice-penetrating radar measurements for major Dronning Maud Land ice stream systems, from the grounding lines up to the Recovery Lakes drainage basin, and filled in major data voids in Antarctic data compilations.We present here the processed line aerogravity data collected using a LaCoste & Romberg air-sea gravity meter S83 mounted in the BAS aerogeophysically equipped Twin Otter aircraft. Data are provided as XYZ ASCII line data.

  • During the 2010/2011 Antarctic field season a collaborative NERC AFI (Antarctic Funding Initiative) project studying the basal boundary conditions of the Institute & Moller ice streams, West Antarctica, collected ~25,000 km of new high quality aerogravity data. Data were acquired using Lacoste and Romberg air-sea gravity meter S83, mounted in the BAS aerogeophysically equipped Twin Otter "Bravo Lima". Data are provided as XYZ ASCII line data. Data were collected as part of the UK Natural Environment Research Council AFI grant NE/G013071/1.

  • During the 2001-02 field season a regional survey was flown on a 10 km line spacing grid over the drainage basin of the Rutford Ice stream (West Antarctica), as part of the TORUS (Targeting ice stream onset regions and under-ice systems) project. We present here the processed line aerogravity data collected using a LaCoste & Romberg air-sea gravity meter S83 mounted in the BAS aerogeophysically equipped Twin Otter aircraft. Data are provided as XYZ ASCII line data.

  • During the austral summer of 2004/05 a collaborative US/UK field campaign undertook a systematic geophysical survey of the entire Amundsen Sea embayment using comparable airborne survey systems mounted in Twin Otter aircraft. Here we present the portion of the survey covering the Pine Island Glacier basin led by British Antarctic Survey. Operating from a temporary field camp (PNE, S 77deg34'' W 095deg56''; we collected ~35,000 km of airborne survey data. Our aircraft was equipped with dual-frequency carrier-phase GPS for navigation, radar altimeter for surface mapping, wing-tip magnetometers, gravity meter, and a new ice-sounding radar system (PASIN). We present here the processed line aerogravity data collected using a LaCoste & Romberg air-sea gravity meter S83 mounted in the BAS aerogeophysically equiped Twin Otter aircraft. Data are provided as XYZ ASCII line data.

  • The data set contains location (latitude and longitude), ellipsoidal height (m) and observed gravity of benchmarks at the Campi Flegrei caldera, Italy. The gravity and location data were collected between 8 and 12 July, 2015 using a Scintrex CG5 gravimeter (serial number: 572) in tandem with a TOPCON HiPer Pro Dual-Frequency GNSS base and rover system. The survey contained a total of 85 benchmarks in addition to the base station.

  • A British Antarctic Survey Twin Otter and survey team acquired 15,500 line-km of aerogeophysical data during the 2001/02 Antarctic field season along a 1-km line spacing grid with tie-lines 8 km apart. Twenty-five flights were flown from the South African base SANAE, for a total of 100 survey hours. We present here the processed line aerogravity data acquired using a LaCoste & Romberg air-sea gravity meter S83 mounted in the BAS aerogeophysically equipped Twin Otter aircraft. Data are provided as XYZ ASCII line data. This high-resolution aerogeophysical survey was part of the "Magmatism as a Monitor of Gondwanabreak-up" project (MAMOG) of the British Antarctic Survey, which included new geochemical investigations, structural geology, geochronology, and AMS studies over western Dronning Maud Land.

  • The ESA PolarGap airborne gravity, lidar/radar and aeromagnetic survey was carried out in Antarctica in the field season 2015/16. The purpose of the 2015/16 ESA PolarGAP airborne survey of the South Pole region was to fill the gap in satellite gravity coverage, enabling construction of accurate global geoid models. Additional radar flights over the Recovery Lakes for the Norwegian Polar Institute (NPI) were carried out as part of the same survey, but included collection of airborne gravity. Gravity data were collected using two complimentary systems. The primary system was a ZLS-modified Lacoste and Romberg (LCR) gravimeter (S-83) which gives exceptionally low and predictable long term drift. The secondary system was high specification inertial navigation system (iMAR RQH-1003), provided by TU Darmstadt, capable of resolving gravity anomalies even under turbulent conditions, but more prone to instrument drift. Results from both systems were merged to give a unified best product. The aircraft used was the BAS aerogeophysicaly equipped twin otter VP-FBL. Data are available as an ASCII table (.csv).

  • As part of the International Thwaites Glacier Collaboration (ITGC) ~9540 km of new airborne gravity data was acquired by the British Antarctic Survey, including ~6200 km over the Thwaites Glacier catchment. Data was collected using an iCORUS strap-down airborne gravimeter system mounted on the BAS aerogeophysical equipped survey aircraft VP-FBL. The survey operated from Lower Thwaites Glacier camp, and focused on collecting data between 70 and 180 km from the grounding line. Additional profiles from the coast to the Western Antarctic Ice Sheet (WAIS) divide and over the eastern shear margin were also flown. Navigation, aircraft attitude, sensor temperature, initial and levelled free air gravity anomalies are provided as an ASCI table. The Thwaites 2019/20 aerogeophysical survey was carried out as part of the BAS National Capability contribution to the NERC/NSF International Thwaites Glacier Collaboration (ITGC) program. Data processing was supported by the BAS Geology and Geophysics team.

  • Microgravity data collected at Uturuncu Volcano located in the Altiplano-Puna Volcanic Complex, central Andes, in November 2022. Raw data collected along a survey line spanning from Laguna Colorada to Laguna Verde using a field gravimeter. All data have been preprocessed and corrected for tidal and drift effects. Data are reported with respect to reference station UBAS located to the west of Uturuncu near the Laguna Colorada.

  • The dataset comprises: Petrophysical data for rocks from the region, XRD mineralogical data, Results of the gravity survey of the basin, tabulation and location of all bedding orientation data for the basin, and sediment transport lineation data. The dataset accompanies publication : On the Structure and Evolution of the Sorbas Basin, S.E. Spain, Tectonophysics 773 (2019) 228230, DOI: https://doi.org/10.1016/j.tecto.2019.228230