EARTH SCIENCE > Paleoclimate > Ice Core Records > Isotopes
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Update frequencies
Resolution
-
This dataset provides a 308 year (1702-2009) deuterium isotope record from the Ferrigno 2010 (F10) ice core. The core was drilled on the Bryan Coast in Ellsworth Land, West Antarctica, during the austral summer 2010/11. The record was measured using a Los Gatos Liquid Water Isotope Analyser at 5cm resolution, corresponding to ~14 samples per year, with annual averages calculated for January-December. Funding was provided by the NERC grant NE/J020710/1
-
Seventy-nine Antarctic ice core snow accumulation records were gathered as part of a community led project coordinated by the PAGES Antarctica 2k working group. Individual ice core records (kg m2 yr-1) were normalised relative to a reference period (1960-1990). The normalised records were separated into seven geographical regions and averaged together to form the regional composites. The seven geographical regions are: East Antarctica; Wilkes Land Coast; Weddell Sea Coast; Antarctic Peninsula; West Antarctic Ice Sheet; Victoria Land; and Dronning Maud Land. Full data description and methods can be found in Thomas et al., 2017. This record also includes the original data, from which the composite records were produced. Due to erroneous data contained in the files, this dataset has been superseded by a corrected version. Please use that corrected dataset in preference to this one to avoid the problem. The DOI for the updated data is: 10.5285/cc1d42de-dfe6-40aa-a1a6-d45cb2fc8293
-
This dataset provides a 308 year (1703-2010) annual snow accumulation record from the Ferrigno 2010 (F10) ice core. The 136 m core was drilled on the Bryan Coast in Ellsworth Land, West Antarctica, during the austral summer 2010/11. The record was measured using the summer peak in nonsea-salt (nss) SO4, in approximately January to December. Snow accumulation is converted to meters of water equivalent (weq - m) based on measured density profile and correcting for thinning using the Nye model, assuming vertical strain rate. Samples were measured at 5 cm resolution, corresponding to approximately eight samples per year. Funding was provided by the NERC grant NE/J020710/1.
-
Seventy-nine Antarctic ice core snow accumulation records were gathered as part of a community led project coordinated by the PAGES Antarctica 2k working group. Individual ice core records (kg m2 yr-1) were normalised relative to a reference period (1960-1990). The normalised records were separated into seven geographical regions and averaged together to form the regional composites. The seven geographical regions are: East Antarctica; Wilkes Land Coast; Weddell Sea Coast; Antarctic Peninsula; West Antarctic Ice Sheet; Victoria Land; and Dronning Maud Land. Full data description and methods can be found in Thomas et al., 2017. This record also includes the original data, from which the composite records were produced. This dataset represents an updated version of another published dataset. The update was necessary due to erroneous data contained in the files. Please use this corrected dataset in preference to the other one.
-
This dataset contains a subset of the ice core data for the ISOL-ICE core recovered from Dronning Maud Land, Antarctica in January 2017 (https://doi.org/10.5285/9c972cfb-0ffa-4144-a943-da6eb82431d2). The subset reported here contains ice core data from the 1455 - 1227 AD period (60.80 - 79.45 m depth) and covers the volcanic eruption of Samalas, Indonesia in 1259. The ice core was dated by annual layer counting and identifying volcanic horizons as fixed time markers. Here we report i) the age-depth model over the 1455 - 1227 AD period, ii) high-resolution nitrate stable isotopic composition of discrete ice core samples, and iii) nitrate, sodium and magnesium mass concentrations and electrolytic meltwater conductivity from continuous flow analysis (CFA). Funding was provided by the NERC grant NE/N011813/1.
-
This dataset contains ice core data for the ISOL-ICE core recovered from Dronning Maud Land, Antarctica in January 2017. The core is 120 m in depth and spans a 1349 +/- 3 year period from 2017 to 668 AD. The core was dated by annual layer counting and identifying volcanic horizons as fixed time markers. High-resolution stable nitrate isotopic composition data is accompanied by chemistry data, conductivity, density, insoluble particle counts (dust), and snow accumulation rate data. Funding was provided by the NERC grant NE/N011813/1.
-
This data compilation is a collaborative effort by the CLIVASH2k (Climate Variability in Antarctica and the Southern Hemisphere over the past 2000 years) working group, part of the PAGES2k network. The database is a compilation of sodium and sulphate records from Antarctic ice cores spanning the past 2000 years, and contains a combination of published records (sourced from public archives), and unpublished data submitted to the CLIVASH2k call. All data are provided as annual averages (Jan-Dec). This database includes the annually resolved section of each original dataset (in the annual_resolution folder) and the coarser than annual sections (in the coarse_resolution folder). Annual averages for the oldest and most recent years were only included if the available data covered more than half of the year. All concentration values are presented in parts per billion (ppb). All flux values are presented in ppb by kilogram per square meter (ppb kg m-2). Data for each species are contained in separate CSV files; Sodium concentration (Na_concentration), Sodium flux (Na_flux), Sulphate concentration (SO4_concentration), Sulphate flux (SO4_flux), Excess Sulphate (xsSO4), Excess Sulphate flux (xsSO4_flux). Each file contains the data for all sites. The Excess Sulphate and Excess Sulphate flux calculations assume that all Na comes from the ocean (according to the standard seawater ion ratio as in [Holland, 1978]). Data were submitted in both the ionic (e.g. SO42-) and elemental forms (S). Elemental S has been converted to sulphate (SO42-) by multiplying by three. A data description publication accompanies this database: Thomas et al., The CLIVASH2k ice core chemistry database: an Antarctic compilation of sodium and sulphate records spanning the past 2000 years. Earth System Science Data. This database was created with the support of the CLIVASH2k project.
-
We present the age scales for three Antarctic Peninsula (AP) ice cores: Palmer, Rendezvous, and Jurassic. The three age scales are all from intermediate-depth cores, in the 133-141 m depth range. The Palmer age scale covers 390 years, 1621-2011 C.E., and is from one of the oldest AP cores. Rendezvous and Jurassic are from lower elevation high-snow accumulation sites and therefore cover shorter intervals, 1843-2011 C.E. and 1874-2011 C.E., respectively. The Palmer, Rendezvous, and Jurassic cores were all drilled in November-December 2012 using the British Antarctic Survey (BAS) electromechanical dry drill (without drill fluid). Water isotopes and the chemical species used to establish the age scales were measured in the ice core labs at BAS (Cambridge, UK) using Continuous Flow Analysis (CFA) or from melted discrete cut ice samples. The annual-layer markers for dating of the cores were primarily determined using nssSO4 and H2O2 summer peaks, with d18O and MSA as additional support. This research effort was carried out by the BAS Ice Core group and the established age scales will provide the foundation for multiple upcoming projects. The ice core drilling and analysis was funded by the British Antarctic Survey, Natural Environment Research Council (NERC, Cambridge, UK), part of UK research and innovation and NERC grant [NE/J020710/1]. Palmer analysis was funded by Haus der Kulturen der Welt (HKW, Berlin, Germany), in collaboration with the Anthropocene working group (AWG).
-
This dataset provides an annual snow accumulation record from the Gomez (GZ07) ice core, dating back to the 1850s. The 136 m core was drilled on the South-western Antarctic Peninsula, during January 2007. The annual accumulation record was derived using two methods: a winter-winter value determined from the winter trough in H2O2 and nonsea-salt (nns) SO4 and a summer-summer value based on the summer peak in H2O2 and nssSO4. Snow accumulation is converted to meters of water equivalent (weq - m) based on measured density profile and correcting for thinning using the Nye model, assuming a linear vertical strain rate through the total depth of the core. The samples were analysed at very high resolution (approximately 10 mm, average 90 samples per year) using the Continuous Flow Analysis with Trace Elements-Dual (CFA-TED) method. The temporal length of the core is 152 years, encompassing 1855-2006 and the estimated uncertainty in the dating is plus/minus 1 year from 1855 to 1875 and less than 1 year from 1875 to 2006.
-
This dataset provides an annual isotope record from the Gomez (GZ07) ice core, dating back to the 1850s. The 136 m core was drilled on the South-western Antarctic Peninsula, during January 2007. We present a new 150-year, high-resolution, stable isotope record (delta-O-18) from the Gomez ice core, drilled on the data sparse south western Antarctic Peninsula. The record is highly correlated with satellite-derived temperature reconstructions and instrumental records from Faraday station on the north west coast, thus making it a robust proxy for local and regional temperatures since the 1850s.