From 1 - 1 / 1
  • Precipitation and near-surface temperature data from the Coupled Model Intercomparison Project phase 5 (CMIP5 models) are statistically downscaled to create these gridded datasets over the Rio Santa River Basin (in the Cordillera Blanca; d02) and the Vilcanota-Urubamba region (d03) at 4 km horizontal resolution, from 2019-2100. The bias-corrected WRF data found in the related dataset are used as the observational truth for the historical period 1980-2018, and the data are downscaled using an empirical quantile mapping technique. Two representative concentration pathways (RCP) have been downscaled, RCP 4.5 and RCP 8.5, from 30 CMIP5 models. The daily total precipitation and daily minimum and maximum temperature at 2 m are downscaled, and the daily average and monthly average temperatures are calculated using the hourly temperature (not archived due to space constraints). The potential evapotranspiration is estimated from the downscaled precipitation and temperature data, using the Hargreaves equation. These data were corrected as part of the PEGASUS (Producing EnerGy and preventing hAzards from SUrface water Storage in Peru) and Peru GROWS (Peruvian Glacier Retreat and its Impact on Water Security) projects. The datasets were created to assess future climate in the Peruvian Andes, as a basis to determine future climate in the region, and as an input for glaciological and hydrological models. The data were created on the JASMIN supercomputer. The creation of this data was conducted under the Peru GROWS and PEGASUS projects, which were both funded by NERC (grants NE/S013296/1 and NE/S013318/1, respectively) and CONCYTEC through the Newton-Paulet Fund. The Peruvian part of the Peru GROWS project was conducted within the framework of the call E031-2018-01-NERC "Glacier Research Circles", through its executing unit FONDECYT (Contract No. 08-2019-FONDECYT).