From 1 - 8 / 8
  • The dataset contains 12 new Be-10 cosmogenic nuclide surface exposure ages. The samples were collected from a scoria cone 1.5 km west of Mt. Murphy an exposed volcanic edifice adjacent to Pope Glacier in the Amundsen Sea Embayment, Antarctica. Samples of erratic cobbles which showed evidence of transport by ice were collected over the 2015-2016 AmuNdsen Sea Embayment Exposure Dating (ANISEED) Field Season, prepared at the CosmIC laboratory, Imperial College London and measured for Be-10 at the Australian Nuclear Science and Technology Organisation. Beryllium-10 concentrations were measured by Accelerated Mass Spectrometry (AMS). Samples were measured to determine timing of deglaciation of two rock outcrops to better constrain the ice sheet lowering history of Pope Glacier during the Holocene. Study forms part of the wider International Thwaites Glacier Collaboration Project (ITGC). Samples were collected by Dr. Joanne Johnson and Dr. Stephen Roberts (British Antarctic Survey), supported by field assistants Alistair Docherty and Iain Rudkin. Sample preparation for 10Be measurement was carried out by Jonathan Adams - PhD candidate affiliated with British Antarctic Survey/ Imperial College London under the supervision of Dr. Dylan Rood - Imperial College London. AMS measurements of Beryllium-10 concentrations were performed by Dr. Klaus Wilcken - Australia''s Nuclear Science and Technology Organisation (ANSTO). National Science Foundation (NSF: Grant OPP-1738989) and Natural Environment Research Council (NERC: Grants NE/S006710/1, NE/S006753/1 and NE/K012088/1 and studentship to JRA). ITGC Contribution No. ITGC.

  • The dataset comprises of lake site photos, data and multiproxy data from Lake L15 (aka GPS Lake), a small lake basin at 62.24057 S, 58.6776 W on Potter Peninsula, King George Island, South Shetland Islands. The data have been used to constrain deglaciation and glacier dynamics on Potter Peninsula. Data for the Lake L15 (GPS Lake) sediment record consist of downcore measurements of chronology, geochemistry, and sedimentology proxy data collected from the depocentre in November 2011. Data collected in this study were funded by: Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), the Direccion Nacional del Antartico/Instituto Antartico Argentino (DNA/IAA) in the framework of the Project PICTA, 2011 - 0102, IAA "Geomorfologia y Geologia Glaciar del Archipielago James Ross e Islas Shetland del Sur, Sector Norte de la Peninsula Antartica"; the Alfred Wegener Institute (AWI) research program Polar regions and Coasts in a changing Earth System (PACES II); IMCONet (FP7 IRSES, action no. 318718); the Natural Environment Research Council (NERC/BAS-CGS Grant no.81); the NERC/BAS science programmes CACHE-PEP: Natural climate variability - extending the Americas palaeoclimate transect through the Antarctic Peninsula to the pole and GRADES-QWAD: Quaternary West Antarctic Deglaciations. We thank the crews of the Argentine research station "Carlini" and the adjoined German Dallmann-Labor (AWI) Laboratory, the Uruguayan research station "Artigas", the Russian Bellingshausen Station, the Chinese Great Wall Station, Base Presidente Eduardo Frei Montalva, the Brazilian Navy Almirante Maximiano, the UK Navy HMS Endurance and NERC/BAS James Clark Ross for logistical support during the 2006, 2011, 2014 and 2015 field seasons.

  • The dataset comprises of stratigraphic chronological and sedimentological data from Potter Peninsula, King George Island, South Shetland Islands. The data have been used to constrain deglaciation and glacier dynamics on Potter Peninsula. Data collected in this study were funded by: Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), the Direccion Nacional del Antartico/Instituto Antartico Argentino (DNA/IAA) in the framework of the Project PICTA, 2011 - 0102, IAA "Geomorfologia y Geologia Glaciar del Archipielago James Ross e Islas Shetland del Sur, Sector Norte de la Peninsula Antartica"; the Alfred Wegener Institute (AWI) research program Polar regions and Coasts in a changing Earth System (PACES II); IMCONet (FP7 IRSES, action no. 318718); the Natural Environment Research Council (NERC/BAS-CGS Grant no.81); the NERC/BAS science programmes CACHE-PEP: Natural climate variability - extending the Americas palaeoclimate transect through the Antarctic Peninsula to the pole and GRADES-QWAD: Quaternary West Antarctic Deglaciations. We thank the crews of the Argentine research station "Carlini''" and the adjoined German Dallmann-Labor (AWI) Laboratory, the Uruguayan research station "Artigas", the Russian Bellingshausen Station, the Chinese Great Wall Station, Base Presidente Eduardo Frei Montalva, the Brazilian Navy Almirante Maximiano, the UK Navy HMS Endurance and NERC/BAS James Clark Ross for logistical support during the 2006, 2011, 2014 and 2015 field seasons.

  • Geochemical data collected during a 40 day incubation of crushed silicate minerals (quartz and alkali feldspar). Quartz and alkali were crushed separately under an oxygen-free atmosphere using a planetary ball mill. The crushed minerals where then incubated in serum vial under with oxygen-limited water, in an oxygen-free N2 atmosphere at 4 degrees C. Headspace gases were collected before the addition of water. Then, headspace gas samples and the water samples were collected 24, 48, 120, 240, 360 and 720 hours after the addition of water. Headspace gas samples were analysed for CH4, CO2 and H2 and O2. Water fraction samples were analysed for anions and organic acids (including acetate, formate, F-, Cl-, NO2-, NO3- and SO4 2-), cations (including Na+, K+, Mg2+ and Ca2+) and total dissolved iron (dFe). The research was supported by NERC grant NE/S001670/1, CRUSH2LIFE (BGO, MT, JT) and by European Research Council (ERC) Synergy Grant DEEP PURPLE under the European Union''s Horizon 2020 Research and Innovation Program (Grant Number 856416).

  • The dataset comprises of lake site photos, sediment data and multiproxy data from Lake L5 (aka Matias Lake), a small lake basin at 62.2450 S, 58.6655 W on Potter Peninsula, King George Island, South Shetland Islands. The data have been used to constrain deglaciation and glacier dynamics on Potter Peninsula. Data for the Lake L5 (Matias Lake) sediment record consist of downcore measurements of chronology, geochemistry, and sedimentology proxy data collected from the depocentre in November 2011. Data collected in this study were funded by: Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), the Direccion Nacional del Antartico/Instituto Antartico Argentino (DNA/IAA) in the framework of the Project PICTA, 2011 - 0102, IAA "Geomorfologia y Geologia Glaciar del Archipielago James Ross e Islas Shetland del Sur, Sector Norte de la Peninsula Antartica"; the Alfred Wegener Institute (AWI) research program Polar regions and Coasts in a changing Earth System (PACES II); IMCONet (FP7 IRSES, action no. 318718); the Natural Environment Research Council (NERC/BAS-CGS Grant no.81); the NERC/BAS science programmes CACHE-PEP: Natural climate variability - extending the Americas palaeoclimate transect through the Antarctic Peninsula to the pole and GRADES-QWAD: Quaternary West Antarctic Deglaciations. We thank the crews of the Argentine research station "Carlini" and the adjoined German Dallmann-Labor (AWI) Laboratory, the Uruguayan research station "Artigas", the Russian Bellingshausen Station, the Chinese Great Wall Station, Base Presidente Eduardo Frei Montalva, the Brazilian Navy Almirante Maximiano, the UK Navy HMS Endurance and NERC/BAS James Clark Ross for logistical support during the 2006, 2011, 2014 and 2015 field seasons.

  • This dataset consists of measurements of cosmogenic 10Be in quartz from a set of erratic cobbles collected from the surfaces of nunataks in West Antarctica. The cobbles were collected during the 2019-20 Antarctic field season from the Hudson Mountains, which are situated adjacent to Pine Island Glacier. The dataset includes cosmogenic nuclide (10Be) exposure ages and all field (sample locations and elevations) and analytical laboratory (quartz and beryllium carrier masses, Be-10/Be-9 ratios) data for field samples and procedural blanks required to calculate the ages. Natural Environment Research Council (NERC: Grants NE/S006710/1, NE/S006753/1, and NE/S00663X/1) and National Science Foundation (NSF: Grant OPP 2317097). Australian Nuclear Science and Technology Organisation (ANSTO) Centre for Accelerator Science award AP12872, through the National Collaborative Research Infrastructure Strategy (NCRIS).

  • Uncertainties in future sea level projections are dominated by our limited understanding of the dynamical processes that control instabilities of marine ice sheets. A valuable case to examine these processes is the last deglaciation of the British-Irish Ice Sheet. The Minch Ice Stream, which drained a large proportion of ice from the northwest sector of the British-Irish Ice Sheet during the last deglaciation, is well constrained, with abundant empirical data which could be used to inform, validate and analyse numerical ice sheet simulations. We use BISICLES, a higher-order ice sheet model, to examine the dynamical processes that controlled the retreat of the Minch Ice Stream. We simulate retreat from the shelf edge under constant "warm" surface mass balance and subshelf melt, to isolate the role of internal ice dynamics from external forcings. The model simulates a slowdown of retreat as the ice stream becomes laterally confined at a "pinning-point" between mainland Scotland and the Isle of Lewis. At this stage, the presence of ice shelves became a major control on deglaciation, providing buttressing to upstream ice. Subsequently, the presence of a reverse slope inside the Minch Strait produces an acceleration in retreat, leading to a "collapsed" state, even when the climate returns to the initial "cold" conditions. Our simulations demonstrate the importance of the Marine Ice Sheet Instability and ice shelf buttressing during the deglaciation of parts of the British-Irish Ice Sheet. Thus, geological data could be used to constrain these processes in ice sheet models used for projecting the future of our contemporary ice sheets. Funding was provided by the Natural Environment Research Council (NERC) SPHERES Doctoral Training Partnership (NE/L002574/1) with CASE support from the British Geological Survey.

  • Sediments cores collected aboard the RRS James Clark Ross (JR104) in the Bellingshausen Sea, 2004. This work was carried out as part of the first systematic investigation of the former ice drainage basin in the southern Bellingshausen Sea. Reconnaissance data collected on previous cruises JR04 (1993) and cruises of R/V Polarstern in 1994 and 1995 suggested that this area contained the outlet of a very large ice drainage basin during late Quaternary glacial periods. The data and samples collected allowed us to address questions about the timing and rate of grounding line retreat from the continental shelf, the dynamic character of the ice that covered the shelf, and its influence on glaciomarine processes on the adjacent continental slope.