Keyword

EARTH SCIENCE > Cryosphere > Glaciers/Ice Sheets > Glacier Topography/Ice Sheet Topography

29 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Update frequencies
Resolution
From 1 - 10 / 29
  • The dataset presented here contains a csv-file including the coordinates, received power of the bed reflection and the two-way travel time of the bed reflection. The X and Y coordinates are projected in EPSG:3031 - WGS 84 / Antarctic Polar Stereographic coordinate system. Data presented here have been frequency filtered and 2D migrated (using a finite difference approach and migration velocity of 0.168 m ns-1), followed by the picking of the bed reflection using ReflexW software (Sandmeier Scientific Software). The received power is calculated within a 280 ns time window centred on, and encompassing, the bed reflection (Gades et al., 2000). This work was funded within the BEAMISH project by NERC AFI award numbers NE/G014159/1 and NE/G013187/1.

  • Radio-echo sounding (RES) data was collected between 4 and 11 December 2012, using the British Antarctic Survey Deep-Look Radio-Echo Sounder (DELORES). From this dataset a digital elevation model (DEM) for Starbuck Glacier was created. The data consists of grids relating to ice-thickness and bedrock elevation for the glacier as well as the RES data.

  • SAR-processed two-dimensional radargram data in SEG-Y format acquired from the Institute and Moller ice streams, West Antarctica between mid-December 2010 and mid-January 2011. Data were collected using the British Antarctic Survey (BAS) Polarimetric radar Airborne Science Instrument (PASIN) radar, operated at a centre frequency of 150 MHz, and installed on the BAS Twin Otter aircraft "Bravo Lima". In total, ~25,000km of aerogeophysical data were collected, with coverage extending from the ice stream grounding zone to the ice divide. A high-resolution grid, with a line-spacing of 7.5 x 25 km, was acquired over the central parts of the ice stream catchments. Data were acquired during twenty-eight survey flights (sixteen flown from remote field camp C110, ten from Patriot Hills and two "transit" flights). Funding for this data acquisition was provided by the UK NERC AFI grant NE/G013071/1. These data should be cited as follows: Siegert, Martin et al. (2017); Synthetic-aperture radar (SAR) processed airborne radio-echo sounding data from the Institute and Moller ice streams, West Antarctica, 2010-11; Polar Data Centre, Natural Environment Research Council, UK; doi:10.5285/8a975b9e-f18c-4c51-9bdb-b00b82da52b8

  • Survey flying (using Basler BT-67 aircraft C-GJKB) was carried out between 1 May 2014 and 12 May 2014 to measure the ice thickness, surface elevation and magnetic anomaly of the Queen Elizabeth Islands, Nunavut, Canada. The primary radar instrument was the UTIG-JPL High-Capability Radar Sounder (HICARS: Peters et al., 2005). Level 1 radar data products are hosted at NSIDC. Surface elevation data was acquired by a fixed beam Riegl laser altimeter using a solid-state infrared lasar firing at 100 Hz. A tail boom-mounted cesium vapor total field magnetometer specially configured for the aircraft measured the magnetic anomaly. Funding was provided by NERC grants NE/K004999/1, NE/K004956/1 and NE/K004956/2.

  • This gridded dataset provides geometry (ice thickness and bedrock topography) covering the Pine Island Glacier catchment. It has been created using the principle of mass conservation, given observed fields of velocity, surface elevation change and surface mass balance, together with sparse ice thickness data measured along airborne radar flight-lines. Previous ice flow modelling studies show that gridded geometry products that use traditional interpolation techniques (e.g. Bedmap2) can result in a spurious thickening tendency near the grounding line of Pine Island Glacier. Removing the cause of this thickening signal, in order to more accurately model ice flow dynamics, has been the motivation for creating a new geometry that is consistent with the conservation of mass. This data was funded by a PhD project within the iSTAR-C programme (with NERC grant reference NE/J005738/1).

  • This dataset contains bed, surface elevation and ice thickness measurements from the Recovery/Slessor/Bailey Region, East Antarctica. Radar data was collected using the 150MHz PASIN radar echo sounding system (Corr et al., 2007) deployed on a British Antarctic Survey (BAS) Twin Otter during the ICEGRAV-2013 airborne geophysics campaign (Forsberg et al., 2018). Data is identified by flight and are available in both Geosoft database (.gdb) and ASCII file formats (.xyz).

  • The dataset encompasses the processed point clouds (.pts format), a panoramic tour, and a video flythrough of registered point clouds capturing a 273 m long reach of the englacial portal channel in the glacier, Austre Broggerbreen, Svalbard, in March 2017. Point clouds were derived from 27 Terrestrial Laser Scanning (TLS) surveys, to characterise the morphology of the channel in three-dimensions and enable extraction of features reflective of hydrological flow conditions. The panoramic tour shows a greyscale image of the scan reflectivity values at each survey location, whereby the lighter the pixel colour, the greater the intensity of the laser beam return. This panoramic tour enables the viewer to self-navigate through the channel to see the morphological features within it. The video flythrough of the point cloud provides a visualisation of the point cloud data, travelling from the portal exit to the extent of the scanned reach. The point cloud has been coloured to reflect differences in height above the portal exit. Funding source Knowledge Economy Skills Scholarship (KESS II) under Project AU10003, a pan-Wales higher-level skills initiative led by Bangor University of behalf of the HE sector in Wales. It is part funded by the Welsh Government''s European Social Fund (ESF) convergence programme for West Wales and the Valleys. Funding was awarded to TDLI-F and JEK, with support from Deri Jones & Associates Ltd. Additional support is acknowledged from Aberystwyth University (Department of Geography and Earth Sciences).

  • The dataset encompasses the processed point clouds (.pts format), a panoramic tour, and a video flythrough of registered point clouds capturing a 122 m long reach of an englacial cut-and-closure channel in the glacier, Austre Broggerbreen, Svalbard, in March 2016. Point clouds were derived from 28 Terrestrial Laser Scanning (TLS) surveys, to characterise the morphology of the channel in three-dimensions and enable extraction of features reflective of hydrological flow conditions. The panoramic tour shows a greyscale image of the scan reflectivity values at each survey location, whereby the lighter the pixel colour, the greater the intensity of the laser beam return. This panoramic tour enables the viewer to self-navigate through the channel to see the morphological features within it. The video flythrough of the point cloud provides a visualisation of the point cloud data, travelling from the glacier surface, down the moulin and along the extent of the scanned reach. The point cloud has been coloured to reflect differences in height. Funding source Knowledge Economy Skills Scholarship (KESS II) under Project AU10003, a pan-Wales higher-level skills initiative led by Bangor University of behalf of the HE sector in Wales. It is part funded by the Welsh Government''s European Social Fund (ESF) convergence programme for West Wales and the Valleys. Funding was awarded to TDLI-F and JEK, with support from Deri Jones & Associates Ltd. Additional support is acknowledged from Aberystwyth University (Department of Geography and Earth Sciences).

  • This dataset provides the data produced as part of the work published in: Leeson, A. A., Foster, E., Rice, A., Gourmelen, N. and van Wessem, J. M.. 2019. ''Evolution of supraglacial lakes on the Larsen B ice shelf in the decades before it collapsed'' Geophysical Research Letters. It includes 1) shapefiles of supraglacial lakes mapped in both optical (Landsat) and SAR (ERS) satellite imagery, 2) rasters of lake depth, derived from Landsat TM and ETM+ images acquired in 1988 and 2000 and 3) shapefiles of the study area considered in the paper. Funding was provided by ERPSRC grant EP/R01860X/1.

  • Improved Digital Elevation Model (DEM) of the Antarctic Ice Sheet derived from Global Navigation Satellite Systems-Reflectometry (GNSS-R). This builds on a previous study (Cartwright et al., 2018) using GNSS-R to derive an Antarctic DEM but uses improved processing and an additional 13 months of measurements. A median bias of under 10 m and root-mean-square (RMS) errors of under 53 m are obtained, as compared to existing DEMs. Funding was provided by NERC grant NE/L002531/1.