EARTH SCIENCE > Cryosphere > Glaciers/Ice Sheets > Glacier Topography/Ice Sheet Topography

57 record(s)
Type of resources
Contact for the resource
Provided by
Update frequencies
From 1 - 10 / 57
  • The dataset presented here contains a csv-file including the coordinates, received power of the bed reflection and the two-way travel time of the bed reflection. The X and Y coordinates are projected in EPSG:3031 - WGS 84 / Antarctic Polar Stereographic coordinate system. Data presented here have been frequency filtered and 2D migrated (using a finite difference approach and migration velocity of 0.168 m ns-1), followed by the picking of the bed reflection using ReflexW software (Sandmeier Scientific Software). The received power is calculated within a 280 ns time window centred on, and encompassing, the bed reflection (Gades et al., 2000). This work was funded within the BEAMISH project by NERC AFI award numbers NE/G014159/1 and NE/G013187/1.

  • SAR-processed two-dimensional radargram data in SEG-Y format acquired from the Institute and Moller ice streams, West Antarctica between mid-December 2010 and mid-January 2011. Data were collected using the British Antarctic Survey (BAS) Polarimetric radar Airborne Science Instrument (PASIN) radar, operated at a centre frequency of 150 MHz, and installed on the BAS Twin Otter aircraft "Bravo Lima". In total, ~25,000km of aerogeophysical data were collected, with coverage extending from the ice stream grounding zone to the ice divide. A high-resolution grid, with a line-spacing of 7.5 x 25 km, was acquired over the central parts of the ice stream catchments. Data were acquired during twenty-eight survey flights (sixteen flown from remote field camp C110, ten from Patriot Hills and two "transit" flights). Funding for this data acquisition was provided by the UK NERC AFI grant NE/G013071/1. These data should be cited as follows: Siegert, Martin et al. (2017); Synthetic-aperture radar (SAR) processed airborne radio-echo sounding data from the Institute and Moller ice streams, West Antarctica, 2010-11; Polar Data Centre, Natural Environment Research Council, UK; doi:10.5285/8a975b9e-f18c-4c51-9bdb-b00b82da52b8

  • This dataset provides the data produced as part of the work published in: Leeson, A. A., Foster, E., Rice, A., Gourmelen, N. and van Wessem, J. M.. 2019. ''Evolution of supraglacial lakes on the Larsen B ice shelf in the decades before it collapsed'' Geophysical Research Letters. It includes 1) shapefiles of supraglacial lakes mapped in both optical (Landsat) and SAR (ERS) satellite imagery, 2) rasters of lake depth, derived from Landsat TM and ETM+ images acquired in 1988 and 2000 and 3) shapefiles of the study area considered in the paper. Funding was provided by ERPSRC grant EP/R01860X/1.

  • This dataset includes ice velocity and ice front position data presented in the published paper by Miles et al. (2021): ''Recent acceleration of Denman Glacier (1972-2017), East Antarctica, driven by grounding line retreat and changes in ice tongue configuration''. The dataset includes ice front position shapefiles of the Denman Ice Tongue from 1962 to 2018, ice velocity data from 1972-74 and 1989, and the coordinates of transect A-AA used in the figure 3 in Miles et al. (2021). This research was funded by NERC standard grant NE/R000824/1.

  • Meteorological variables (wind speed, air temperature and wind direction) were collected using two wind towers. Photogrammetric data were collected using a pole-mounted digital camera and DJI Phantom 3 UAV. LiDAR data collected via terrestrial and airborne laser scanning. Fieldwork carried out at Hintereisferner glacier, in the Oetztal Alps region, Tyrol, Austria, from 1-15 August 2018 by Joshua Chambers, Thomas Smith and Mark Smith. Terrestrial laser scan (TLS) data collected by Rudolf Sailer. Airborne laser scan (ALS) data originally from Open Data Austria, see Sailer et al. (2012). One wind tower recorded for the entire study duration, the second was moved to different plots every ~4 days. Photogrammetric data were collected on 8, 10, 11, 12 and 13 August. TLS scans were split into upper- and lower-glacier, and completed on 3, 7, 12 and 16 August. Data were used to examine the relations between glacier aerodynamic roughness and sampling resolution, and to develop a correction factor for roughness derived from coarser resolution data. Fieldwork was funded by an INTERACT Transnational Access grant awarded to Mark Smith under the European Union H2020 Grant Agreement No. 730938. Joshua Chambers is supported by a NERC PhD studentship (NE/L002574/1). Ivana Stiperski was funded by Austrian Science Fund (FWF) grant T781-N32.

  • We present here the Bedmap3 ice thickness, bed and surface elevation aggregated points and survey lines. The aggregated points consist of statistically-summarised shapefile points (centred on a continent-wide 500 m x 500 m grid) that reports the average values of Antarctic ice thickness, bed and surface elevation from the full-resolution survey data and information on their distribution. The points presented here correspond to the added points since the last release of Bedmap2. The data comes from 14 different data providers and 75 individual surveys. They are available as geopackages and shapefiles. The associated Bedmap datasets are listed here: This work is supported by the SCAR Bedmap project and the British Antarctic Survey''s core programme: National Capability - Polar Expertise Supporting UK Research

  • This dataset contains bed and surface elevation picks derived from airborne radar collected during the POLARGAP 2015/16 project funded by the European Space Agency (ESA) and with in-kind contribution from the British Antarctic Survey, the Technical University of Denmark (DTU), the Norwegian Polar Institute (NPI) and the US National Science Foundation (NSF). This collaborative project collected ~38,000 line-km of new aerogeophysical data using the 150MHz PASIN radar echo sounding system (Corr et al., 2007) deployed on a British Antarctic Survey (BAS) Twin Otter. The primary objective of the POLARGAP campaign was to carry out an airborne gravity survey covering the southern polar gap beyond the coverage of the GOCE orbit. This dataset covers the South Pole as well as parts of the Support Force, Foundation and Recovery Glaciers. The bed pick data acquired during the POLARGAP survey over the Recovery Lakes is archived at NPI:

  • This dataset contains bed, surface elevation and ice thickness measurements from the Recovery/Slessor/Bailey Region, East Antarctica. Radar data was collected using the 150MHz PASIN radar echo sounding system (Corr et al., 2007) deployed on a British Antarctic Survey (BAS) Twin Otter during the ICEGRAV-2013 airborne geophysics campaign (Forsberg et al., 2018). Data is identified by flight and are available in both Geosoft database (.gdb) and ASCII file formats (.xyz).

  • We present here BEDMAP1 (2000-2001), a suite of gridded products describing surface elevation, ice-thickness and the sea floor and subglacial bed elevation of the Antarctic south of 60deg S. The suite includes grids representing: - ice-sheet thickness over the ice sheet and shelves, - bed elevation beneath the grounded ice sheet, - bathymetry to 60 degrees South including the areas beneath the ice shelves. These grids are consistent with a high-resolution surface elevation model of Antarctica. While the digital models have a nominal spatial resolution of 5 km, such high resolution is not strictly justified by the original data density over all parts of the ice sheet. The suite does however provide an unparalleled vision of the geosphere beneath the ice sheet and a more reliable basis for ice sheet modelling. The bed elevation DEM, which includes the entire geosphere south of 60 degrees South, provides an improved delineation of the boundary between East and West Antarctica and sheds new light on the morphology of the contiguous East Antarctic landmass, much of which is buried below an average of 2500 m of ice.

  • We present here Bedmap2 (2013), a suite of gridded products describing surface elevation, ice-thickness and the sea floor and subglacial bed elevation of the Antarctic south of 60deg S. We derived these products using data from a variety of sources, including many substantial surveys completed since the original Bedmap compilation (Bedmap1) in 2001. In particular, the Bedmap2 ice thickness grid is made from 25 million measurements, over two orders of magnitude more than were used in Bedmap1. In most parts of Antarctica the subglacial landscape is visible in much greater detail than was previously available and the improved data coverage has in many areas revealed the full scale of mountain ranges, valleys, basins and troughs, only fragments of which were previously indicated in local surveys. The derived statistics for Bedmap2 show that the volume of ice contained in the Antarctic ice sheet (27 million km3) and its potential contribution to sea-level rise (58 m) are similar to those of Bedmap1, but the mean thickness of the ice sheet is 4.6 % greater, the mean depth of the bed beneath the grounded ice sheet is 72 m lower and the area of ice sheet grounded on bed below sea level is increased by 10 %. The Bedmap2 compilation highlights several areas beneath the ice sheet where the bed elevation is substantially lower than the deepest bed indicated by Bedmap1. These products, along with grids of data coverage and uncertainty, provide new opportunities for detailed modelling of the past and future evolution of the Antarctic ice sheets. The associated Bedmap datasets are listed here: The compilation of Bedmap2 products was undertaken within the British Antarctic Survey''s programme, Polar Science for Planet Earth.