From 1 - 8 / 8
  • "The Quantitative applications of high-resolution late Holocene proxy data sets: estimating climate sensitivity and thermohaline circulation influences" project, part of the Natural Environment Research Council (NERC) RAPID Climate Change Research Programme, was led by Prof Keith Briffa of the University of East Anglia and co-investigators at the University of East Anglia (Round 1 - NER/T/S/2002/00440 - Duration 1 Jul 2003 - 30 Jun 2008). This dataset contains self-calibrating Palmer Drought Severity Index data.

  • A data set consisting of seventeen functional traits collected on 43 saplings from a Control and 33 saplings from a long-term drought experiment site in a tropical rainforest in NE Amazonia, Brazil. The experiment was designed to exclude 50% of the incoming rainfall to the soil and was conducted over a 1ha area, alongside the experiment there is a control (non- drought plot) of a corresponding size. The samples were collected in 2017, fifteen years after the start of the experiment on trees with a diameter at breast height (1.3m) of 1-10cm. The purpose of the dataset was to assess if traits relating to plant metabolism (photosynthesis and respiration) and plant hydraulic processes had been significantly altered in trees growing under drought conditions. Full details about this dataset can be found at https://doi.org/10.5285/ca147ac9-ac68-4348-b5f0-dcd483ef3a85

  • This dataset provides 100 model realisations of daily river flow in cubic metres per second (m3/s) for 1,366 catchments, for the period 1962 to 2015. The dataset is model output from the DECIPHeR hydrological model driven by observed climate data (CEH-GEAR rainfall and CHESS-PE potential evapotranspiration). The modelled catchments correspond to locations of National River Flow Archive (NRFA) gauging stations and provide good spatial coverage across the UK. The dataset was produced as part of MaRIUS (Managing the Risks, Impacts and Uncertainties of drought and water Scarcity) to provide national scale probabilistic flow simulations and predictions for UK drought risk analysis. MaRIUS was a UK NERC-funded research project (2014-2017) that developed a risk-based approach to drought and water scarcity. Full details about this dataset can be found at https://doi.org/10.5285/d770b12a-3824-4e40-8da1-930cf9470858

  • Net ecosystem exchange and methane fluxes were measured from a hemi-boreal ombrotrophic fen in Southern Sweden. An automated chamber system, SkyLine2D, was used to measure the fluxes near-continuously from August 2017 to September 2019. Four ecotypes were identified: sphagnum (Sphagnum spp), eriophorum, heather and water, to assess how these different ecotypes would respond to drought. The 2018 drought allowed comparison of fluxes between drought and non-drought years (May to September), and their recovery the following year. Full details about this dataset can be found at https://doi.org/10.5285/d7bfc4ed-8ead-4d06-8e45-b592c1f48f3f

  • Standardised Precipitation Index (SPI) data for Integrated Hydrological Units (IHU) Hydrometric Areas (Kral et al., 2015; https://doi.org/10.5285/3a4e94fc-4c68-47eb-a217-adee2a6b02b3). SPI is a drought index based on the probability of precipitation for a given accumulation period as defined by McKee et al. [1]. SPI is calculated for different accumulation periods: 1, 3, 6, 9, 12, 18, 24 months. Each of these is in turn calculated for each of the twelve calendar months. Note that values in monthly (and for longer accumulation periods also annual) time series of the data therefore are likely to be autocorrelated. The standard period which was used to fit the gamma distribution is 1961-2010. The dataset covers the period from 1862 to 2015. NOTE: the difference between this dataset with the previously published dataset 'Standardised Precipitation Index time series for IHU hydrometric areas (1961-2012)' [SPI_IHU_HA] (Tanguy et al., 2015; https://doi.org/10.5285/5e1792a0-ae95-4e77-bccd-2fb456112cc1), apart from the temporal extent, is the underlying rainfall data from which SPI was calculated. In the previously published dataset, CEH-GEAR (Tanguy et al., 2014; https://doi.org/10.5285/5dc179dc-f692-49ba-9326-a6893a503f6e) was used, whereas in this new version, Met Office 5km rainfall grids were used (see supporting documentation for more details). Within Historic Droughts project (grant number: NE/L01016X/1), the Met Office has digitised historic rainfall and temperature data to produce high quality historic rainfall and temperature grids, which motivated the change in the underlying data to calculate SPI. The methodology to calculate SPI is the same in the two datasets. This release supersedes the previous version, https://doi.org/10.5285/d8655cc9-b275-4e77-9e6c-1b16eee5c7d5, as it addresses localised issues with the source data (Met Office monthly rainfall grids) for the period 1960 to 2000. [1] McKee, T. B., Doesken, N. J., Kleist, J. (1993). The Relationship of Drought Frequency and Duration to Time Scales. Eighth Conference on Applied Climatology, 17-22 January 1993, Anaheim, California. Full details about this dataset can be found at https://doi.org/10.5285/a754cae2-d6a4-456e-b367-e99891d7920f

  • Monthly time series of simulated de-trended/de-seasonalised biological indicators at 86 bio-monitoring sites in England and Wales based on the modelled response of these indicators to discharge (represented by a standardised streamflow index, SSI) at 76 paired gauging stations. The biological indicators include: (i) Average Score per Taxon (ASPT) (ii) Lotic-invertebrate Index for Flow Evaluation (LIFE) calculated at family-level (LIFE Family) (iii) LIFE calculated at species-level (LIFE Species). The simulation spans the period 1964-2012. Full details about this dataset can be found at https://doi.org/10.5285/2ad542be-e883-4c6e-b198-7d49da62208c

  • Standardised Precipitation Index (SPI) data for Integrated Hydrological Units (IHU) groups (Kral et al., 2015; https://doi.org/10.5285/f1cd5e33-2633-4304-bbc2-b8d34711d902). SPI is a drought index based on the probability of precipitation for a given accumulation period as defined by McKee et al. [1]. SPI is calculated for different accumulation periods: 1, 3, 6, 9, 12, 18, 24 months. Each of these is in turn calculated for each of the twelve calendar months. Note that values in monthly (and for longer accumulation periods also annual) time series of the data therefore are likely to be autocorrelated. The standard period which was used to fit the gamma distribution is 1961-2010. The dataset covers the period from 1862 to 2015. NOTE: the difference between this dataset with the previously published dataset 'Standardised Precipitation Index time series for IHU Groups (1961-2012) [SPI_IHU_groups]' (Tanguy et al., 2015; https://doi.org/10.5285/dfd59438-2170-4472-b810-bab33a83d09f), apart from the temporal extent, is the underlying rainfall data from which SPI was calculated. In the previously published dataset, CEH-GEAR (Tanguy et al., 2014; https://doi.org/10.5285/5dc179dc-f692-49ba-9326-a6893a503f6e) was used, whereas in this new version, Met Office 5km rainfall grids were used (see supporting information for more details). Within Historic Droughts project (grant number: NE/L01016X/1), the Met Office has digitised historic rainfall and temperature data to produce high quality historic rainfall and temperature grids, which motivated the change in the underlying data to calculate SPI. The methodology to calculate SPI is the same in the two datasets. This release supersedes the previous version, https://doi.org/10.5285/047d914f-2a65-4e9c-b191-09abf57423db, as it addresses localised issues with the source data (Met Office monthly rainfall grids) for the period 1960 to 2000. [1] McKee, T. B., Doesken, N. J., Kleist, J. (1993). The Relationship of Drought Frequency and Duration to Time Scales. Eighth Conference on Applied Climatology, 17-22 January 1993, Anaheim, California. Full details about this dataset can be found at https://doi.org/10.5285/a01e09b6-4b40-497b-a139-9369858101b3

  • This dataset contains the Standardised Streamflow Index (SSI) data for 303 catchments across the United Kingdom from 1891 to 2015. The SSI is a drought index based on the cumulative probability of a given monthly mean streamflow occurring for a given catchment. Here, the SSI is calculated for the following accumulation periods: 1, 3, 6, 9, 12, 18 and 24 months. Each accumulation period is calculated for calendar end-months. The standard period used to fit the Tweedie distribution is 1961-2010. The SSI was produced by the RCUK-funded Historic Droughts project in order to characterise and explore hydrological drought severity over the period 1891-2015. This dataset is an outcome of the Historic Droughts Project (grant number: NE/L01016X/1). Full details about this dataset can be found at https://doi.org/10.5285/58ef13a9-539f-46e5-88ad-c89274191ff9