From 1 - 10 / 13
  • The BACI System State Vector datasets cover large regional sites in Europe, West, Eastern and Southern Africa in addition to smaller fast track sites in Denmark, Wytham Forest, Kruger National Park, Hainich, Viterbo, Romania, Slovenia, Ethiopia and Southern/Central/Northern Somalia. The BACI datasets address one of main complications in combining different Earth Observation (EO) data streams is a requirement of common time and space resolution. These data are gap free time series, of EO data across optical (reflectance, albedo), passive microwave (LST) and active microwave (backscatter) domains. This collection contains optimally smoothed and filtered time series of reflectance, albedo and backscatter datasets, starting in 2000 and running to the present, as the core SSV output. Crucially, the SSV data is provided with consistent uncertainties, which is key for use in downstream quantitative modelling and change detection applications, particularly to help attribute and explain detected change. Changes in the Earth’s surface can have very different properties and so can influence very different domains of the electromagnetic spectrum. As a result these datasets are particularly useful for trying to detect changes in ecosystem structure and function, a potentially vital application for satellite monitoring of the Earth system.

  • The BACI Surface State Vector (SSV) dataset for the Hainich forested hill chain in the state of Thuringia in Germany and provides a description of the surface state from a combination of satellite observations across wavelength domains i.e. albedo (visible), Land Surface Temperature (LST) (passive/thermal microwave) and backscatter (active microwave). The dataset contains a unique spatially and temporally consistent (as far as the observations allow) series of observations of the land surface, across optical and microwave domains. The innovation of this approach is in providing a SSV in a common space/time framework, containing information from multiple, independent data streams, with associated uncertainty. The methods used can be used to combine data from multiple different satellite sources. The resulting dataset is intended to make the best use of all available observations to detect changes in the land surface state: the combination of data is likely to show changes that would not be apparent from data in a single wavelength region. The inclusion of uncertainty also allows the strength of the resulting changes to be properly quantified.

  • The BACI Surface State Vector (SSV) dataset for Europe provides a description of the surface state from a combination of satellite observations across wavelength domains i.e. albedo (visible), Land Surface Temperature (LST) (passive/thermal microwave) and backscatter (active microwave). The dataset contains a unique spatially and temporally consistent (as far as the observations allow) series of observations of the land surface, across optical and microwave domains. The innovation of this approach is in providing a SSV in a common space/time framework, containing information from multiple, independent data streams, with associated uncertainty. The methods used can be used to combine data from multiple different satellite sources. The resulting dataset is intended to make the best use of all available observations to detect changes in the land surface state: the combination of data is likely to show changes that would not be apparent from data in a single wavelength region. The inclusion of uncertainty also allows the strength of the resulting changes to be properly quantified.

  • The BACI Surface State Vector (SSV) dataset for the Horn of Africa provides a description of the surface state from a combination of satellite observations across wavelength domains i.e. albedo (visible), Land Surface Temperature (LST) (passive/thermal microwave) and backscatter (active microwave). The dataset contains a unique spatially and temporally consistent (as far as the observations allow) series of observations of the land surface, across optical and microwave domains. The innovation of this approach is in providing a SSV in a common space/time framework, containing information from multiple, independent data streams, with associated uncertainty. The methods used can be used to combine data from multiple different satellite sources. The resulting dataset is intended to make the best use of all available observations to detect changes in the land surface state: the combination of data is likely to show changes that would not be apparent from data in a single wavelength region. The inclusion of uncertainty also allows the strength of the resulting changes to be properly quantified.

  • The BACI Surface State Vector (SSV) dataset for Slovenia and provides a description of the surface state from a combination of satellite observations across wavelength domains i.e. albedo (visible), Land Surface Temperature (LST) (passive/thermal microwave) and backscatter (active microwave). The dataset contains a unique spatially and temporally consistent (as far as the observations allow) series of observations of the land surface, across optical and microwave domains. The innovation of this approach is in providing a SSV in a common space/time framework, containing information from multiple, independent data streams, with associated uncertainty. The methods used can be used to combine data from multiple different satellite sources. The resulting dataset is intended to make the best use of all available observations to detect changes in the land surface state: the combination of data is likely to show changes that would not be apparent from data in a single wavelength region. The inclusion of uncertainty also allows the strength of the resulting changes to be properly quantified.

  • The BACI Surface State Vector (SSV) dataset for the Southern Somalia fast track site and provides a description of the surface state from a combination of satellite observations across wavelength domains i.e. albedo (visible), Land Surface Temperature (LST) (passive/thermal microwave) and backscatter (active microwave). The dataset contains a unique spatially and temporally consistent (as far as the observations allow) series of observations of the land surface, across optical and microwave domains. The innovation of this approach is in providing a SSV in a common space/time framework, containing information from multiple, independent data streams, with associated uncertainty. The methods used can be used to combine data from multiple different satellite sources. The resulting dataset is intended to make the best use of all available observations to detect changes in the land surface state: the combination of data is likely to show changes that would not be apparent from data in a single wavelength region. The inclusion of uncertainty also allows the strength of the resulting changes to be properly quantified.

  • The BACI Surface State Vector (SSV) dataset for Denmark provides a description of the surface state from a combination of satellite observations across wavelength domains i.e. albedo (visible), Land Surface Temperature (LST) (passive/thermal microwave) and backscatter (active microwave). The dataset contains a unique spatially and temporally consistent (as far as the observations allow) series of observations of the land surface, across optical and microwave domains. The innovation of this approach is in providing a SSV in a common space/time framework, containing information from multiple, independent data streams, with associated uncertainty. The methods used can be used to combine data from multiple different satellite sources. The resulting dataset is intended to make the best use of all available observations to detect changes in the land surface state: the combination of data is likely to show changes that would not be apparent from data in a single wavelength region. The inclusion of uncertainty also allows the strength of the resulting changes to be properly quantified.

  • The BACI Surface State Vector (SSV) dataset for the Kruger National Park track site and provides a description of the surface state from a combination of satellite observations across wavelength domains i.e. albedo (visible), Land Surface Temperature (LST) (passive/thermal microwave) and backscatter (active microwave). The dataset contains a unique spatially and temporally consistent (as far as the observations allow) series of observations of the land surface, across optical and microwave domains. The innovation of this approach is in providing a SSV in a common space/time framework, containing information from multiple, independent data streams, with associated uncertainty. The methods used can be used to combine data from multiple different satellite sources. The resulting dataset is intended to make the best use of all available observations to detect changes in the land surface state: the combination of data is likely to show changes that would not be apparent from data in a single wavelength region. The inclusion of uncertainty also allows the strength of the resulting changes to be properly quantified.

  • The BACI Surface State Vector (SSV) dataset for the Central Somalia fast track site and provides a description of the surface state from a combination of satellite observations across wavelength domains i.e. albedo (visible), Land Surface Temperature (LST) (passive/thermal microwave) and backscatter (active microwave). The dataset contains a unique spatially and temporally consistent (as far as the observations allow) series of observations of the land surface, across optical and microwave domains. The innovation of this approach is in providing a SSV in a common space/time framework, containing information from multiple, independent data streams, with associated uncertainty. The methods used can be used to combine data from multiple different satellite sources. The resulting dataset is intended to make the best use of all available observations to detect changes in the land surface state: the combination of data is likely to show changes that would not be apparent from data in a single wavelength region. The inclusion of uncertainty also allows the strength of the resulting changes to be properly quantified.

  • The BACI Surface State Vector (SSV) dataset for the Romanian fast track site and provides a description of the surface state from a combination of satellite observations across wavelength domains i.e. albedo (visible), Land Surface Temperature (LST) (passive/thermal microwave) and backscatter (active microwave). The dataset contains a unique spatially and temporally consistent (as far as the observations allow) series of observations of the land surface, across optical and microwave domains. The innovation of this approach is in providing a SSV in a common space/time framework, containing information from multiple, independent data streams, with associated uncertainty. The methods used can be used to combine data from multiple different satellite sources. The resulting dataset is intended to make the best use of all available observations to detect changes in the land surface state: the combination of data is likely to show changes that would not be apparent from data in a single wavelength region. The inclusion of uncertainty also allows the strength of the resulting changes to be properly quantified.