From 1 - 10 / 24
  • A British Antarctic Survey Twin Otter and survey team acquired 8,300 line-km of aerogeophysics data during the Austral summer of 1998/99. Gravity and radio-echo data were acquired simultaneously with the magnetic data at a compromise constant barometric height of 2,200 m, which provides a terrain clearance of 100 m over the highest peaks. Two separate surveys were conducted; one at 5 km line spacing (tie lines at 20 km) over and stretching beyond the southern extent of the Forrestal range (main survey), and one at 2 km line spacing (tie lines at 8 km) covering the Dufek Massif (detailed survey). Ashtech Z12 dual frequency GPS receivers were used for survey navigation. Pseudorange data were supplied to a Picodas PNAV navigation interface computer, which was used to guide the pilot along the pre-planned survey lines. The actual flight path was recovered, using carrier-phase, continuous, kinematic GPS processing techniques. All pseudorange navigation data were recorded at 1 Hz on a Picodas PDAS 1000, PC-based data acquisition system. We present here the processed line aerogravity data collected using Lacoste and Romberg air-sea gravity meter S83. Data are provided as XYZ ASCII line data.

  • The survey collected a total of 11,500 km of data along 22 lines, spaced 12 km apart and oriented perpendicular to the strike of both the Bouguer anomaly field, as derived from land data (McGibbon and Smith, 1991), and the major sub-ice topographical features (Doake et al., 1983). The speed of the aircraft was set to produce a sample spacing of about 60 m and the data were collected at heights between 1600 and 2000 m above sea level. The gravity signal was recorded using a LaCoste and Romberg air/sea gravimeter, S-83, which has been kindly loaned to BAS by the Hydrographic Office of the Royal Navy. The meter was modified by the ZLS company for use in an aircraft. The equipment was deployed in a BAS De-Havilland Twin Otter aircraft. Differential, dual frequency, carrier phase, GPS measurements of the aircraft''s motion were made using Trimble and Ashtech geodetic receivers and antennas. Ice thickness data were obtained using a BAS-built, radio echo sounding system (Corr and Popple, 1994). Ice-bottom returns over most of the survey area were obtained at a sample spacing of approximately 28 m. GPS measurements were tied into base stations in International Terrain Reference Frame network (Dietrich et al., 1998) and gravity measurements to base stations in the IGSN71 net (Jones and Ferris, 1999). We present here the processed line aerogravity data collected using Lacoste and Romberg air-sea gravity meter S83. Data are provided as XYZ ASCII line data.

  • This data set contains aerogravity data collected during the WISE/ISODYN project. This collaborative UK/Italian project collected ~ 61000 line km of new aerogeophysical data during the 2005/2006 austral summer, over the previously poorly surveyed Wilkes subglacial basin, Dome C, George V Land and Northern Victoria Land. We present here the processed line aerogravity data collected using a LaCoste & Romberg air-sea gravity meter S83 mounted in the BAS aerogeophysically equipped Twin Otter aircraft. Data are provided as XYZ ASCII line data.

  • A high resolution survey was flown opportunistically by BAS at the end of the AGAP aerogeophysical campaign during the 2008-09 Antarctic field season with NSF support from McMurdo. The main purpose was to collect data on the ice shelf for a radar pre-site survey for a major planned international ANDRILL drilling campaign at Coulman High. Due to lack of appropriate funding levels from several countries this ANDRILL drilling project has been postponed (https://www.icdp-online.org/projects/world/antarctica/coulman-high/) but the site remains nevertheless a potentially interesting target for future geoscience studies. The Coulman High project aimed to explore the range of paleo-environments, ecosystems and tectonic events that affected the Ross Sea region as it transitioned from the warm, high-CO2 Greenhouse world typical of the Eocene into the lower-CO2 and highly variable Icehouse conditions of the Oligocene and early Miocene. The aeromagnetic data released here can be used together with more extensive pre-existing international datasets to help study rift-related magmatism, faulting and sedimentary basins in the region.

  • During the 1996-1997 Antarctic field season, an aeromagnetic survey was carried out by the BAS to the west of Alexander Island, designed to investigate the Charcot Island anomaly. The presented data was collected using wingtip mounted Caesium-vapour magnetometers. Magnetic effects due to aircraft motion were actively compensated using a triad of fluxgate magnetometers mounted in the tail of the aircraft. Data are provided as XYZ ASCII line data.

  • A British Antarctic Survey Twin Otter and survey team acquired 8,300 line-km of magnetic data during the Austral summer of 1998/99. Gravity and radio-echo data were acquired simultaneously with the magnetic data at a compromise constant barometric height of 2,200 m, which provides a terrain clearance of 100 m over the highest peaks. Two separate surveys were conducted; one at 5 km line spacing (tie lines at 20 km) over and stretching beyond the southern extent of the Forrestal range (main survey), and one at 2 km line spacing (tie lines at 8 km) covering the Dufek Massif (detailed survey). Wing-tip-mounted cesium vapour magnetometers acquired data at 10 Hz, which was resampled to 1 Hz after deletion of data corrupted by the radio echo transmissions. It is not possible to compensate the magnetic data for maneuver noise after this process as the data are under-;sampled with respect to maneuver noise. However, because gravity data was being acquired at the same time, turbulent conditions were avoided and so maneuver noise was at a minimum. Ashtech Z12 dual frequency GPS receivers were used for survey navigation. Pseudorange data were supplied to a Picodas PNAV navigation interface computer, which was used to guide the pilot along the pre-planned survey lines. The actual flight path was recovered, using carrier-phase, continuous, kinematic GPS processing techniques. All magnetic and pseudorange navigation data were recorded at 1 Hz on a Picodas PDAS 1000, PC-based data acquisition system. Data were de-spiked and then smoothed (~100 m low pass filter), before re-sampling from 10 to 1 Hz. The data were IGRF corrected, leveled and reduced to the pole in the field. A 2.5 km cell grid was produced. The negative bias to the anomaly amplitudes is a result of the poorly defined IGRF in this area. We present here the processed line aeromagnetic data acquired using scintrex cesium magnetometers mounted on the BAS aerogeophysical equiped Twin Otter. Data are provided as XYZ ASCII line data.

  • The survey collected a total of 11,500 km of data along 22 lines, spaced 12 km apart and oriented perpendicular to the strike of both the Bouguer anomaly field, as derived from land data (McGibbon and Smith, 1991), and the major sub-ice topographical features (Doake et al., 1983). The speed of the aircraft was set to produce a sample spacing of about 60 m and the data were collected at heights between 1600 and 2000 m above sea level. The gravity signal was recorded using a LaCoste and Romberg air/sea gravimeter, S-83, which has been kindly loaned to BAS by the Hydrographic Office of the Royal Navy. The meter was modified by the ZLS company for use in an aircraft. The equipment was deployed in a BAS De-Havilland Twin Otter aircraft. Differential, dual frequency, carrier phase, GPS measurements of the aircraft''s motion were made using Trimble and Ashtech geodetic receivers and antennas. Ice thickness data were obtained using a BAS-built, radio echo sounding system (Corr and Popple, 1994). Ice-bottom returns over most of the survey area were obtained at a sample spacing of approximately 28 m. GPS measurements were tied into base stations in International Terrain Reference Frame network (Dietrich et al., 1998) and gravity measurements to base stations in the IGSN71 net (Jones and Ferris, 1999). We present here the processed bed elevation picks from airborne radar depth sounding collected using the BAS PASIN radar system. Data are provided as XYZ ASCII line data.

  • Using the British Antarctic Survey''s DeHavilland Dash-7, approximately 10,000 line-km of data were collected from the Black Coast and adjacent Weddell Sea embayment, which is situated ca. 600 km southeast of the airfield at Rothera Station . Flight lines were spaced at 10-km intervals with perpendicular tie lines spaced at 40 km. Where time and fuel allowed, selected areas were infilled at a 5-km line spacing. The marine part of the survey was flown at around less than 1000 m above sea level.We present here the processed line aeromagnetic data acquired using scintrex cesium magnetometers mounted on the BAS aerogeophysical equiped Dash-7. Data are provided as XYZ ASCII line data.

  • An airborne radar survey was flown as part of the GRADES-IMAGE project funded by BAS over the Evans Ice stream/Carson Inlet region mainly to image englacial layers and bedrock topography during the 2006/07 field season. Aeromagnetic data were also opportunistically collected. We present here the processed line aeromagnetic data collected using scintrex cesium magnetometers mounted on the BAS aerogeophysical equipped Twin Otter. Data are provided as XYZ ASCII line data.

  • Airborne gravity data were collected using a Zero Length Spring Corporation (ZLS)-modified LaCoste and Romberg model S air-sea gravimeter. The meter was mounted in a gyro-stabilised, shock mounted platform at the centre of mass of the aircraft to minimise the effect of vibrations and rotational motions. GPS data were recorded with an Ashtech Z12 dual frequency receiver in the aircraft and at a fixed base station. Differential, carrier phase, kinematic GPS methods were then used to calculate all the navigational information used for the dynamic corrections of the aerogravity data. Standard processing steps were taken to convert the raw gravity data to free air anomalies, including latitude, free air and Eotvos corrections. The vertical accelerations of the aircraft, which dominate the gravity signal recorded by the meter, were calculated by double differencing GPS height measurements. In addition, a correction was made for gravimeter reading errors caused by the platform tilting when it was subjected to horizontal accelerations (Swain, 1996). After making the above corrections, the data were low pass filtered for wavelengths less than 9 km to remove short wavelength noise from the geological signal. The data were continued to a common altitude of 2050 m and levelled. Cross-over analysis at 118 intersections yielded a standard deviation of 2.9 mGal, which is within the 1-5 mGal error range typically reported for airborne gravity surveys after levelling. Comparison between airborne measurements and previous land-based gravity data (Garrett, 1990), yielded an RMS difference of ~4.5 mGal, which is within the 2 sigma range for airborne gravity data accuracy.