From 1 - 10 / 22
  • Laser ablation (LA) ICP-MS analyses of olivine-hosted melt inclusions from Fuego volcano, Guatemala eruptions on the 14th, 17th and 23rd October, 1974. Full descriptions regarding the analysed samples are given in Rose et al. (1978) and Lloyd et al. (2013). References Lloyd, A.S., Plank, T., Ruprecht, P., Hauri, E.H. and Rose, W. (2013) Volatile loss from melt inclusions in pyroclasts of differing sizes. Contributions to Mineralogy and Petrology 165, 129-153. Rose, W.I., Anderson, A.T., Woodruff, L.G. and Bonis, S.B. (1978) The October 1974 basaltic tephra from Fuego volcano: Description and history of the magma body. Journal of Volcanology and Geothermal Research 4, 3-53.

  • Laser ablation (LA) ICP-MS analyses (presented in parts per million, ppm) of melt inclusions from the 1980 eruption of Mt. St. Helens (18th May-16th October). Detailed sample collection methods are given in Blundy et al. (2008). Blundy, J., Cashman, K.V. and Berlo, K. (2008) Evolving magma storage conditions beneath Mount St. Helens inferred from chemical variations in melt inclusions from the 1980-1986 and current (2004-2006) eruptions, in: Sherrod, D.R., Scott, W.E., Stauffer, P.H. (Eds.), A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006, Reston, VA, pp. 755-790.

  • Whole rock analyses (presented in parts per million, ppm) of volcanic samples from Mt. St Helens, Washington, USA. Detailed sample descriptions and given in Blundy et al. (2008) and references therein. All samples were analysed using solution ICP-MS at the Open University. Blundy, J., Cashman, K.V. and Berlo, K. (2008) Evolving magma storage conditions beneath Mount St. Helens inferred from chemical variations in melt inclusions from the 1980-1986 and current (2004-2006) eruptions, in: Sherrod, D.R., Scott, W.E., Stauffer, P.H. (Eds.), A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006, Reston, VA, pp. 755-790.

  • This Excel spreadsheet provides the composition of volcanic glasses (melt inclusions, melt embayment and matrix glasses) analysed as part of NSF-NERC grant "Sulfur Cycling in Subduction Zones". In the spreadsheet is a "readme" worksheet that explains each column and the method of data collection if applicable. These data will be included in future publications. The samples are taken from Central America, Alaska and Northern Mariana Islands.

  • Major, trace element and Pb isotope data are reported here for basalts recovered by drilling at the flanks of the Reykjanes Ridge, south of Iceland, during IODP Expedition 395C (2020-2022). The drilling targeted V-shaped ridges and V-shaped troughs forming the flanks of the Reykjanes Ridge. There were 4 sites drilled and sampled, and these include holes: U1554 (4F) - located on V-shaped trough 2B, holes U1555 (5I + 5G) - located on V-shaped trough 1, U1562 (2B), located on V-shaped ridge 3, and U1563 (3B) - located on V-shaped ridge 2A. Samples are predominately volcanic glasses and were recovered from cores drilled from up to 150m below the sediment-basement interface where they penetrated a series of pillow and sheet flow lavas. The sample name corresponds to the site, hole, core section and depth interval (see IODP Exp 395 site reports for details). Fresh volcanic glass was separated, cleaned in deionised water, picked under a binocular microscope to remove and altered material, cleaned again and then dissolved in HF and HCl prior to analyses. Major and trace elements abundances were analysed on an ICP-MS with a selection of geological reference materials (GRMs) used as standards. Pb isotopes ratios (206/204, 207/204 and 208/204) were measured on a neptune multicollector ICP-MS following using a double spike technique applied to the sample solutions. Reported here are the measured values of the GRMs and their uncertainties. The aim of this study was to test the hypothesis that the V-shaped ridges are the result of temperature and compositional pulses in a mantle plume, that is postulated to rise beneath Iceland and spread outward where it intersects the mid-ocean ridge to the south, and the effects of those pulses on climate over the last ~20Ma.

  • The data report new F, Cl, and Br fluid/melt partition coefficients for intermediate to silicic melts, for which F and Br data are particularly lacking; and for varying CO2-H2O contents. The data was collected from basaltic andesite and dacite rock experiments from the Kelud volcano in Indonesia and Quizapu volcano in Chile Over the period of two years, 2020 – 2022. The experiments were conducted at pressures 50–120 MPa, temperatures 800–1100 °C, and volatile compositions [molar XH2O = H2O/(H2O +CO2)] of 0.55 to 1, with redox conditions around the Nickel-Nickel Oxygen buffer (ƒO2 ≈ NNO). Experiments were not doped with Cl, Br, or F and were conducted on natural crystal-bearing volcanic products at conditions close to their respective pre-eruptive state. The data was collected to assess the effects of changing fluid composition (XH2O) on Br fluid/melt partitioning for the first time. Three tables of data are provided; Table 1.xlsx Table 1 Experimental conditions, which were conducted under NNO oxygen buffer. Table 3.xlsx Table 3: Major element and Br, Cl and F contents of experiments, modelled water and CO2 values and Fluid/melt partitioning. The standard deviation (1 sigma) of the multiple analyses for each experiment (n=11-24) Table S2 SIMS and EMPA Secondary standards.xlsx SIMS and EMPA secondary standards Associated paper; Mike Cassidy, Alexander A. Iveson, Madeleine C.S. Humphreys, Tamsin A. Mather, Christoph Helo, Jonathan M. Castro, Philipp Ruprecht, David M. Pyle, EIMF; Experimentally derived F, Cl, and Br fluid/melt partitioning of intermediate to silicic melts in shallow magmatic systems. American Mineralogist 2022;; 107 (10): 1825–1839. doi: https://doi.org/10.2138/am-2022-8109

  • Anisotropy of magnetic susceptibility (AMS) data of sediment samples from IODP Site U1391 in the Southwest Iberian Margin. Data are organised in columns, including depth and estimated age of the sediment samples and the following AMS parameters: raw and orientation corrected K1 declination, AMS factors Pj, q, and T. More detailed information on the data is available at: https://doi.org/10.1029/2020PA003947.

  • Unconfined compressive strength data for rocks from TilTil and ElTeniente mines in Chile, plus basic index tests (porosity, density) and Elastic wave velocity for selected samples. Laboratory data collected as part of NERC grant NE/W00383X/1:Geological safety and optimisation in mining operations: towards a new understanding of fracture damage, heterogeneity and anisotropy.

  • Method development for trace-level analyses of phosphite in chloride-rich matrices. Dataset includes linearity data from the ion chromatograph (IC) in stand-alone mode and coupled to the inductively-coupled plasma mass spectrometer (ICP-MS), with and without removing chloride from the solution, as well as nuclear magnetic resonance (NMR) data for phosphorus species. The results demonstrate successful removal of the chloride matrix for analyses of phosphite in solutions at sub-ppb concentrations. Additional details about the methodology are published in Baidya, A.S. and Stüeken, E.E., 2024, Rapid Communications in Mass Spectrometry, 38(1), p.e9665.

  • The dataset consists of eleven spreadsheet tabs, each tab containing lipid biomarker palaeothermometry (air temperature reconstructions) and bulk organic carbon isotope data from individual lignites that are known to stratigraphically span the Cretaceous-Palaeogene (K-Pg) boundary. Uncalibrated, raw biomarker distributions (glycerol dialkyl glycerol tetraethers; GDGTs) are provided, as well as the calculated calibration outputs. Site coordinates are: West Bijou, Colorado (39°34'14'N, 104°18'09'W), Sussex, Wyoming (43°39'40"N, 106°19'06"W), Pyramid Butte, North Dakota (46°25'03'N, 103°58'33'W), Hell Creek Road, Montana (47°31'35"N, 106°56'23"W), Rock Creek West, Saskatchewan (49°02'20"N, 106°34'00"W), Wood Mountain Creek, Saskatchewan (49°25'20"N, 106°19'50"W), Frenchman Valley, Saskatchewan (49°20’56"N, 108°25’05"W), Knudesn’s Coulee, Alberta (51°54’27"N, 113°02’57"W) Griffith’s Farm, Alberta (51°54’47"N, 112°57’51"W), Coal Valley Cores (GSC CV-42-2, Cores 1 and 2), Alberta (53°05’02"N, 116°47’ 40"W) Police Island, Northwest Territories (64°52'42"N, 125°12'33"W).