From 1 - 10 / 29
  • HadUK-Grid is a collection of gridded climate variables derived from the network of UK land surface observations. The data have been interpolated from meteorological station data onto a uniform grid to provide complete and consistent coverage across the UK. These data at 1 km resolution have been averaged across a set of discrete geographies defining UK countries consistent with data from UKCP18 climate projections. The dataset spans the period from 1862 to 2019, but the start time is dependent on climate variable and temporal resolution. The gridded data are produced for daily, monthly, seasonal and annual timescales, as well as long term averages for a set of climatological reference periods. Variables include air temperature (maximum, minimum and mean), precipitation, sunshine, mean sea level pressure, wind speed, relative humidity, vapour pressure, days of snow lying, and days of ground frost. This data set supersedes the previous versions of this dataset which also superseded UKCP09 gridded observations. Subsequent versions may be released in due course and will follow the version numbering as outlined by Hollis et al. (2018, see linked documentation). For this version of note is that historical data recovery has improved monthly rainfall 1862-1910, daily rainfall 1883-1910, monthly temperature 1900-1909, and additional sunshine grids for 1919-1928 have been added. The primary purpose of these data are to facilitate monitoring of UK climate and research into climate change, impacts and adaptation. The datasets have been created by the Met Office with financial support from the Department for Business, Energy and Industrial Strategy (BEIS) and Department for Environment, Food and Rural Affairs (DEFRA) in order to support the Public Weather Service Customer Group (PWSCG), the Hadley Centre Climate Programme, and the UK Climate Projections (UKCP18) project. The data recovery activity to supplement 19th and early 20th Century data availability has also been funded by the Natural Environment Research Council (NERC grant ref: NE/L01016X/1) project "Analysis of historic drought and water scarcity in the UK". The dataset is provided under Open Government Licence.

  • Radio propagation measurements at 20 GHz at Chilton, Oxfordshire for the ESA funded Large Scale Assessment of KA/Q band atmospheric channel using the ALPHASAT TDP5 Propagation beacon signal.

  • This dataset contains Methane, Carbon Dioxide and Nitrous Oxide measurements taken from Heathfield Tower at 50m and 100m. The measurements were taken using a Gas Chromatography-micro Electron Capture Detector (GC-ECD). This data was collected as part of the NERC GAUGE (Greenhouse gAs UK and Global Emissions) project (NE/K002449/1NERC and TRN1028/06/2015). The GAUGE project aimed to produce robust estimates of the UK Greenhouse Gas budget, using new and existing measurement networks and modelling activities at a range of scales. It aimed to integrate inter- calibrated information from ground-based, airborne, ferry-borne, balloon-borne, and space-borne sensors, including new sensor technology.

  • Estimated annual burned area and uncertainties for three global satellite-derived burned area products. Each estimate is provided at 1° spatial resolution for the years 2001-2013. Theoretical annual uncertainties in burned area (standard errors) products are generated according to a multiplicative triple collocation error model and annualised according to a sampling of the 16-day burned area estimates from each product. The approach provides unique uncertainties at 1° for the NASA Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 6 burned area product (MCD64); the MODIS Collection 5.1 MCD45 product and the FireCCI50 product. Please note that due to limitations in the available sampling for the error model, around 40% of cells do not have uncertainty estimates.

  • HadUK-Grid is a collection of gridded climate variables derived from the network of UK land surface observations. The data have been interpolated from meteorological station data onto a uniform grid to provide complete and consistent coverage across the UK. These data at 1 km resolution have been averaged across a set of discrete geographies defining UK administrative regions consistent with data from UKCP18 climate projections. The dataset spans the period from 1862 to 2019, but the start time is dependent on climate variable and temporal resolution. The gridded data are produced for daily, monthly, seasonal and annual timescales, as well as long term averages for a set of climatological reference periods. Variables include air temperature (maximum, minimum and mean), precipitation, sunshine, mean sea level pressure, wind speed, relative humidity, vapour pressure, days of snow lying, and days of ground frost. This data set supersedes the previous versions of this dataset which also superseded UKCP09 gridded observations. Subsequent versions may be released in due course and will follow the version numbering as outlined by Hollis et al. (2018, see linked documentation). For this version of note is that historical data recovery has improved monthly rainfall 1862-1910, daily rainfall 1883-1910, monthly temperature 1900-1909, and additional sunshine grids for 1919-1928 have been added. The primary purpose of these data are to facilitate monitoring of UK climate and research into climate change, impacts and adaptation. The datasets have been created by the Met Office with financial support from the Department for Business, Energy and Industrial Strategy (BEIS) and Department for Environment, Food and Rural Affairs (DEFRA) in order to support the Public Weather Service Customer Group (PWSCG), the Hadley Centre Climate Programme, and the UK Climate Projections (UKCP18) project. The data recovery activity to supplement 19th and early 20th Century data availability has also been funded by the Natural Environment Research Council (NERC grant ref: NE/L01016X/1) project "Analysis of historic drought and water scarcity in the UK". The dataset is provided under Open Government Licence.

  • HadUK-Grid is a collection of gridded climate variables derived from the network of UK land surface observations. The data have been interpolated from meteorological station data onto a uniform grid to provide complete and consistent coverage across the UK. The datasets cover the UK at 1 km x 1 km resolution. These 1 km x 1 km data have been used to provide a range of other resolutions and across countries, administrative regions and river basins to allow for comparison to data from UKCP18 climate projections. The dataset spans the period from 1862 to 2019, but the start time is dependent on climate variable and temporal resolution. The gridded data are produced for daily, monthly, seasonal and annual timescales, as well as long term averages for a set of climatological reference periods. Variables include air temperature (maximum, minimum and mean), precipitation, sunshine, mean sea level pressure, wind speed, relative humidity, vapour pressure, days of snow lying, and days of ground frost. This data set supersedes the previous versions of this dataset which also superseded UKCP09 gridded observations. Subsequent versions may be released in due course and will follow the version numbering as outlined by Hollis et al. (2018, see linked documentation). For this version of note is that historical data recovery has improved monthly rainfall 1862-1910, daily rainfall 1883-1910, monthly temperature 1900-1909, and additional sunshine grids for 1919-1928 have been added. The primary purpose of these data are to facilitate monitoring of UK climate and research into climate change, impacts and adaptation. The datasets have been created by the Met Office with financial support from the Department for Business, Energy and Industrial Strategy (BEIS) and Department for Environment, Food and Rural Affairs (DEFRA) in order to support the Public Weather Service Customer Group (PWSCG), the Hadley Centre Climate Programme, and the UK Climate Projections (UKCP18) project. The data recovery activity to supplement 19th and early 20th Century data availability has also been funded by the Natural Environment Research Council (NERC grant ref: NE/L01016X/1) project "Analysis of historic drought and water scarcity in the UK". The dataset is provided under Open Government Licence.

  • This dataset contains measurements taken from the Fourier Transform Infra-Red (FTIR instrument location at the Weybourne Atmospheric Observatory. The instrument measures CH4, N2O, CO and CO2. The Weybourne Atmospheric Observatory (WAO) is a Regional station in the Global Atmosphere Watch (GAW) programme of the World Meteorological Organization (WMO). It is situated on the North Norfolk coast (52°57’02’’N, 1°07’19’’E, 15 m asl).

  • Radio propagation measurements at 40 GHz at Chilton, Oxfordshire for the ESA funded Large Scale Assessment of KA/Q band atmospheric channel using the ALPHASAT TDP5 Propagation beacon signal.

  • Starting in February 2017, a network of 14 Thies™ manufactured Laser Precipitation Monitors (LPMs) were installed at various locations around the United Kingdom to create the Disdrometer Verification Network (DiVeN). The instruments were installed for verification of radar hydrometeor classification algorithms but are valuable for much wider use in the scientific and operational meteorological community. Every Thies LPM is able to designate each observed hydrometeor into one of 20 diameter bins from >= 0.125 mm to > 8 mm, and one of 22 speed bins from > 0.0 m s-1 to > 20.0 m s-1. A laser and diode receiver operate in tandem; a falling particle will occlude the beam. The duration of the occlusion and the maximum extent (measured by diode voltage) determines the fall velocity and diameter respectively. Using empirically-derived relationships, the instrument classifies precipitation into one of 11 possible hydrometeor classes in the form of a 'present weather code', with an associated indicator of uncertainty. To provide immediate feedback to data users, the observations are plotted in near real time (NRT) and made publicly available on a website within 7 minutes (see linked documentation section). A 'present weather code' is a World Meteorological Organisation (WMO) code used to define the present observatory weather (see linked documentation for the WMO present weather code list). The instruments belonged to the Met Office but were loaned to the National Centre for Atmospheric Science (NCAS) for the duration of the project. NCAS handle the receiving server for real-time DiVeN data, which is the only route to this dataset. On-site collection of data are not guaranteed in all circumstances. Some of the sites rely on unreliable O2 3G dongles; whilst the Feshie instrument was solar and wind powered and the Coverhead instrument suffered from power / connectivity issues. Any missing data can be explained by these reasons, and are handled appropriately in the files. The data were collated into daily files of 1440 minutes. More information can be found in Pickering et al., 2018, see related documentation.

  • The NERC-funded Microphysics of Antarctic Clouds (MAC) project was centred on an aircraft campaign measuring clouds, aerosols, and boundary layer properties over the Weddell Sea, Antarctica. These data are simulations of the Polar-optimised Weather Research and Forecasting (PWRF) model for 5 configurations of the model's Morrison microphysics scheme, produced for a case study of two separate flights over the same region during the campaign (British Antarctic Survey MASIN twin-otter aircraft flights 218 an 219 on 27th November 2015). Each simulation contains data from two domains - a parent domain with 5km grid size and a nest with a 1km grid size. The control simulation used default physics options in the PWRF model's Morrison microphysics scheme. For the no-threshold, 2xHM, 5xHM, 10xHM simulations, thresholds restricting Hallett-Mossop secondary ice production in the PWRF model's Morrison microphysics scheme were removed, and for the 2xHM, 5xHM, and 10xHM cases the corresponding ice multiplication factor was increased by a factor of 2, 5 or 10. In all simulations, an approximation of the DeMott et al., 2010 (PNAS) parametrization used for primary ice nucleation. Methodology and further details can be found in Young et al., 2019 (Geophysical Research Letters): Radiative effects of secondary ice enhancement in coastal Antarctic clouds.