Modelled annual average production loss due to ozone damage for four global staple crops 2010-2012
Modelled annual average production loss (thousand tonnes per 1 degree by 1 degree grid cell) due to ground-level ozone pollution is presented for the crops maize (Zea mays), rice (Oryza sativa), soybean (Glycine max) and wheat (Triticum aestivum), for the period 2010-2012. Data are on a global scale, based on the distribution of production for each crop, according to the Food and Agriculture Organisation’s (FAO) Global Agro-Ecological Zones (GAEZ) crop production data for the year 2000. Modelled ozone data (2010-2012) needed for production loss calculations were derived from the EMEP MSC-W (European Monitoring and Evaluation Programme, Meteorological Synthesising Centre-West) chemical transport model (version 4.16). Mapping the global crop production losses due to ozone highlights the impact of ozone on crops and allows areas at high risk of ozone damage to be identified, which is a step towards mitigation of the problem. The production loss calculations were done as part of the NERC funded SUNRISE project (NEC06476) and National Capability Project NC-Air quality impacts on food security, ecosystems and health (NEC05574). Full details about this dataset can be found at
https://doi.org/10.5285/0aa7911a-ab5f-4b08-a225-28b1e8344d01
Simple
- Date (Publication)
- 2020-07-15
- Date (Creation)
- 2017-12-15
- Identifier
- doi: / 10.5285/0aa7911a-ab5f-4b08-a225-28b1e8344d01
- Other citation details
- Sharps, K., Mills, G., Simpson, D. , Pleijel, H. , Frei, M. , Burkey, K. , Emberson, L. , Uddling, J. , Broberg, M. , Feng, Z., Kobayashi, K., Agrawal, M. (2020). Modelled annual average production loss due to ozone damage for four global staple crops 2010-2012. NERC Environmental Information Data Centre 10.5285/0aa7911a-ab5f-4b08-a225-28b1e8344d01
Author
EMEP MSC‐W, Norwegian Meteorological Institute
-
Simpson, D.
https://orcid.org/0000-0001-9538-3208
Author
United States Department of Agriculture – Agricultural Research Service (USDA‐ARS)
-
Burkey, K.
Author
Stockholm Environment Institute, University of York
-
Emberson, L.
https://orcid.org/0000-0003-3463-0054
Point of contact
UK Centre for Ecology & Hydrology
-
Katrina Sharps
https://orcid.org/0000-0003-3265-1505
- Maintenance and update frequency
- notPlanned Not planned
- GEMET - INSPIRE themes, version 1.0
-
- Environmental Monitoring Facilities
- Access constraints
- otherRestrictions Other restrictions
- Other constraints
- no limitations
- Use constraints
- otherRestrictions Other restrictions
- Use constraints
- otherRestrictions Other restrictions
- Other constraints
- © UK Centre for Ecology & Hydrology
- Use constraints
- otherRestrictions Other restrictions
- Other constraints
- © Norwegian Meteorological Institute
- Use constraints
- otherRestrictions Other restrictions
- Other constraints
- © University of Bonn
- Use constraints
- otherRestrictions Other restrictions
- Other constraints
- © Stockholm Environment Institute at York
- Use constraints
- otherRestrictions Other restrictions
- Other constraints
- © University of Gothenburg
- Use constraints
- otherRestrictions Other restrictions
- Other constraints
- © The University of Tokyo
- Use constraints
- otherRestrictions Other restrictions
- Other constraints
- © Banaras Hindu University
- Use constraints
- otherRestrictions Other restrictions
- Other constraints
- If you reuse this data, you should cite: Sharps, K., Mills, G., Simpson, D. , Pleijel, H. , Frei, M. , Burkey, K. , Emberson, L. , Uddling, J. , Broberg, M. , Feng, Z., Kobayashi, K., Agrawal, M. (2020). Modelled annual average production loss due to ozone damage for four global staple crops 2010-2012. NERC Environmental Information Data Centre https://doi.org/10.5285/0aa7911a-ab5f-4b08-a225-28b1e8344d01
- Spatial representation type
- vector Vector
- Distance
- 100000 urn:ogc:def:uom:EPSG::9001
- Metadata language
- EnglishEnglish
- Character set
- utf8 UTF8
- Topic category
-
- Environment
- Farming
- Climatology, meteorology, atmosphere
- Begin date
- 2010-01-01
- End date
- 2012-12-31
N
S
E
W
- Unique resource identifier
- WGS 84
- Distribution format
-
-
Shapefile
()
-
Shapefile
()
- OnLine resource
-
Download the data
Download a copy of this data
- OnLine resource
-
Supporting information
Supporting information available to assist in re-use of this dataset
- Hierarchy level
- dataset Dataset
- Other
- dataset
Conformance result
- Date (Publication)
- 2010-12-08
- Statement
- A 1 degree by 1degree grid was created using ArcMap. Crop production data (0.0833 degree resolution) from the Food and Agriculture Organisation’s (FAO) Global Agro-Ecological Zones (GAEZ) dataset (for the year 2000) was downloaded. Irrigated and non-irrigated production data was collected for each crop type. For each crop, total production was summed per 1° by 1° grid cell. Then average production for the period 2010-2012 for each grid cell was estimated using a conversion factor from FAO national crop production data, based on the difference between average production for the period 1999-2001 and 2010-2012. For each crop, only grid cells with greater than 500 tonnes crop production were included when mapping yield loss. Each grid cell was classed as either irrigated (greater than 7% irrigated crop production) or non-irrigated. Grid cells were also assigned to a hemisphere (Northern or Southern) and a climate zone. For each hemisphere/climate zone combination, a 90-day growing period was set, based on the main growing season per year for each crop. The EMEP MSC-W (European Monitoring and Evaluation Programme, Meteorological Synthesising Centre-West) chemical transport model (version 4.16) was used to calculate daily ozone flux (POD3IAM; phytotoxic ozone dose above 3 nmol m−2 s−1, parameterized for integrated assessment modelling) for the years 2010 - 2012. For each crop, the accumulated 90-day POD3IAM was calculated per grid cell based on the climate specific growing period and the irrigation class for the cell, and an average value calculated for the period 2010-2012. Yield loss was calculated using the ozone dose-response relationship for wheat, following the most recent methodology adopted by the Convention for Long-Range Transboundary Air Pollution (CLRTAP) in 2017. First a reference value of POD3IAM = 0.1mmol/m2 (used to represent ozone uptake at pre-industrial or natural ozone levels) was subtracted before yield loss was calculated. This value was the mean POD3IAM for the experimental conditions included in the dose-response relationship, assuming constant 10 ppb ozone throughout the 90-day period. The equation used to calculate percentage yield loss was as follows: Percentage Yield Loss = (POD3IAM – 0.1) * 0.64 where 0.64 is the slope of the relationship between POD3IAM and percentage yield reduction and represents the percentage reduction per mmol/m2 POD3IAM. For maize, rice and soybean, the POD3IAM values per grid cell were first used to calculate percentage yield loss using the equation for wheat. Then the relative ozone sensitivity of each crop compared to wheat was calculated by dividing the slope of the M7 (7-hour mean ozone concentration) response function for the crop by that for wheat. For each grid cell, the percentage yield loss for wheat was multiplied by the relative ozone sensitivity value, to calculate the final estimated percentage yield loss for each crop. Production loss for each crop was then calculated per grid square using total crop production per grid cell (averaged for 2010-2012) and the estimated yield loss per grid cell, with the following equation: Production loss (thousand tonnes) = Crop production (thousand tonnes) * (percent yield loss/100) Production loss values were added to the 1° by 1° grid and saved as GIS shapefiles, with one file per crop. An evaluation of EMEP model performance found a strong correlation between modelled and measured ozone data from Global Atmosphere Watch (GAW) sites. The EMEP model was found to capture spatial and temporal variations in ozone across regions.
- File identifier
- 0aa7911a-ab5f-4b08-a225-28b1e8344d01 XML
- Metadata language
- EnglishEnglish
- Character set
- ISO/IEC 8859-1 (also known as Latin 1) 8859 Part 1
- Hierarchy level
- dataset Dataset
- Hierarchy level name
- dataset
- Date stamp
- 2024-03-14T15:45:45
- Metadata standard name
- UK GEMINI
- Metadata standard version
- 2.3
Point of contact
NERC EDS Environmental Information Data Centre
Lancaster Environment Centre, Library Avenue, Bailrigg
,
Lancaster
,
LA1 4AP
,
UK
https://eidc.ac.uk/
Overviews
Spatial extent
N
S
E
W
Provided by
Associated resources
Not available